已知一家公司生产某种产品的年固定成本为6万元,每生产1千件需另投入2.9万元,设该公司一年内生产该产品千件并全部销售完,每千件的销售收入为万元,且.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)求该公司生产这一产品的最大年利润及相应的年产量.(年利润=年销售收入-年总成本)
当前题号:1 | 题型:解答题 | 难度:0.99
(2014年苏州B19)在平面直角坐标系中,将从点出发沿纵、横方向到达点的任一路径称为的一条“折线路径”,所有“折线路径”中长度最小的称为的“折线距离” .如图所示的路径与路径都是的“折线路径”.某地有三个居民区分别位于平面内三点,现计划在这个平面上某一点处修建一个超市.
(1)请写出点到居民区的“折线距离”的表达式(用表示,不要求证明);
(2)为了方便居民,请确定点的位置,使其到三个居民区的“折线距离”之和最小.
当前题号:2 | 题型:解答题 | 难度:0.99
在某单位的职工食堂中,食堂每天以元/个的价格从面包店购进面包,然后以元/个的价格出售.如果当天卖不完,剩下的面包以元/个的价格全部卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了80个面包,以(单位:个,)表示面包的需求量,(单位:元)表示利润.

(1)求关于的函数解析式;
(2)根据直方图估计利润不少于元的概率;
(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量,则取,且的概率等于需求量落入的频率),求的分布列和数学期望.
当前题号:3 | 题型:解答题 | 难度:0.99
某单位组织职工去某地参观学习,需包车前往,甲车队说:“如果领队买一张全票,其余人可享受7折优惠。”乙车队说:“你们属于团体票,按原价的7.5折优惠。”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪家更优惠。
当前题号:4 | 题型:解答题 | 难度:0.99
“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R与广告费A之间满足关系Ra(a为正常数),广告效应为DaA.那么精明的商人为了取得最大广告效应,投入广告费应为________.
当前题号:5 | 题型:填空题 | 难度:0.99
将进货单价为80元的商品按90元一个出售时,能卖出400个,根据经验,该商品若每个涨(降)1元,其销售量就减少(增加)20个,为获得最大利润,售价应定为多少?
当前题号:6 | 题型:解答题 | 难度:0.99
某公司研发出一款新产品,批量生产前先同时在甲、乙两城市销售30天进行市场调查.调查结果发现:甲城市的日销售量与天数的对应关系服从图①所示的函数关系;乙城市的日销售量与天数的对应关系服从图②所示的函数关系;每件产品的销售利润与天数的对应关系服从图③所示的函数关系,图①是抛物线的一部分.
  
(Ⅰ)设该产品的销售时间为,日销售量利润为,求的解析式;
(Ⅱ)若在的销售中,日销售利润至少有一天超过万元,则可以投入批量生产,该产品是否可以投入批量生产,请说明理由.
当前题号:7 | 题型:解答题 | 难度:0.99
某公司生产一种仪器的固定成本为10000元,每生产一台仪器需增加投入200元,已知总收益满足函数.
其中x是仪器的月产量(单位:台).
(1)将利润表示为月产量的函数
(2)当月产量x为何值时,公司所获利润最大?最大利润为多少元?
(总收益=总成本﹢利润)
当前题号:8 | 题型:解答题 | 难度:0.99
根据市场调查,某种新产品投放市场的30天内,每件销售价格P(元)与时间t(天 t∈N+)的关系满足如图,日销量Q(件)与时间t(天)之间的关系是Q=﹣t+40(t∈N+).
(Ⅰ)写出该产品每件销售价格P与时间t的函数关系式;
(2)在这30天内,哪一天的日销售金额最大?(日销量金额=每件产品销售价格×日销量)
当前题号:9 | 题型:解答题 | 难度:0.99
两城相距,在两城之间距处建一核电站给两城供电,为保证城市安全,核电站距城市距离不得小于 .已知供电费用等于供电距离的平方与供电量(亿度)之积的倍,若城供电量为每月20亿度,城供电量为每月10亿度.
(1)把月供电总费用表示成的函数;
(2)核电站建在距城多远,才能使供电总费用最少?
当前题号:10 | 题型:解答题 | 难度:0.99