- 集合与常用逻辑用语
- 函数与导数
- 几类不同增长的函数模型
- + 常见的函数模型(1)——二次、分段函数
- 利用二次函数模型解决实际问题
- 分段函数模型的应用
- 分式型函数模型的应用
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某公司为获得较好的收益,每年要投入一定资金用于广告促销,经调查,每年投入广告费
(百万元),可增加销售额约为
(百万元)(
)
(1)若该公司当年的广告费控制在4百万元之内,则应该设入多少广告费,才能使该公司获得的收益最大?
(2)现该公司准备共投入6百万元,分别用于广告促销售和技术改造,经预测,每设入技术改造费
(百万元),可增加销售额约为
(百万元),请设计一种资金分配方案,使该公司由此获得最大收益.(注:收益
销售额
成本)



(1)若该公司当年的广告费控制在4百万元之内,则应该设入多少广告费,才能使该公司获得的收益最大?
(2)现该公司准备共投入6百万元,分别用于广告促销售和技术改造,经预测,每设入技术改造费




据市场分析,南雄市精细化工园某公司生产一种化工产品,当月产量在10吨至25吨时,月生产总成本y(万元)可以看成月产量x(吨)的二次函数;当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元,为二次函数的顶点.写出月总成本y(万元)关于月产量x(吨)的函数关系.已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润?
有甲、乙两种商品,经营销售这两种商品所得的利润依次为M万元和N万元,它们与投入资金
万元的关系可由经验公式给出:M=
,N=
(
≥1).今有8万元资金投入经营甲、乙两种商品,且乙商品至少要求投资1万元,
设投入乙种商品的资金为
万元,总利润
;
(2)为获得最大利润,对甲、乙两种商品的资金投入分别是多少?共能获得多大利润?




设投入乙种商品的资金为


(2)为获得最大利润,对甲、乙两种商品的资金投入分别是多少?共能获得多大利润?
某公司试销某种“上海世博会”纪念品,每件按30元销售,可获利50%,设每件纪念品的成本为a元.
(1)试求a的值;
(2)公司在试销过程中进行了市场调查,发现销售量y(件)与每件售价x(元)满足关系y=-10x+800.设每天销售利润为W(元),求每天销售利润W(元)与每件售价x(元)之间的函数解析式;当每件售价为多少时,每天获得的利润最大?最大利润是多少?
(1)试求a的值;
(2)公司在试销过程中进行了市场调查,发现销售量y(件)与每件售价x(元)满足关系y=-10x+800.设每天销售利润为W(元),求每天销售利润W(元)与每件售价x(元)之间的函数解析式;当每件售价为多少时,每天获得的利润最大?最大利润是多少?
某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元.用同样工时,可以生产最低档次产品60件,每提高一个档次将少生产3件产品,则每天获得利润最大时生产产品的档次是( )
A.7 | B.8 |
C.9 | D.10 |
某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需要增加投入100元,已知总收益满足函数:
,其中
是仪器的月产量.
(1)将利润
元表示为月产量
台的函数;
(2)当月产量为何值时,公司所获得利润最大?最大利润是多少?(总收益=总成本+利润).


(1)将利润


(2)当月产量为何值时,公司所获得利润最大?最大利润是多少?(总收益=总成本+利润).
“足寒伤心,民寒伤国”,精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对石山区乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该批产品销售量
万件(生产量与销售量相等)与推广促销费
万元之间的函数关系为
(其中推广促销费不能超过3万元).已知加工此批农产品还要投入成本
万元(不包含推广促销费用),若加工后的每件成品的销售价格定为
元/件.
(1)试将该批产品的利润
万元表示为推广促销费
万元的函数;(利润
销售额
成本
推广促销费)
(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?





(1)试将该批产品的利润





(2)当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?
如图,已知底角为
的等腰梯形
,底边
长为12,腰长为
,当一条垂直于底边
(垂足为
)的直线
从左至右移动(与梯形
有公共点)时,直线
把梯形分成两部分.

(1)令
,试写出直线右边部分的面积
与
的函数解析式;
(2)在(1)的条件下,令
.构造函数
①判断函数
在
上的单调性;
②判断函数
在定义域内是否具有单调性,并说明理由.










(1)令



(2)在(1)的条件下,令


①判断函数


②判断函数

如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为
,雨速沿E移动方向的分速度为
.E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与
×S成正比,比例系数为
;(2)其它面的淋雨量之和,其值为
,记
为E移动过程中的总淋雨量,当移动距离d=100,面积S=
时.

(1)写出
的表达式
(2)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度
,使总淋雨量
最少.








(1)写出

(2)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度


某医疗研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y与时间t之间近似满足如图所示的曲线.

(1)写出服药后y与t之间的函数关系式;
(2)据测定,每毫升血液中含药量不少于4 μg时治疗疾病有效,假若某病人一天中第一次服药为上午7:00,问:一天中怎样安排服药时间(共4次)效果最佳?

(1)写出服药后y与t之间的函数关系式;
(2)据测定,每毫升血液中含药量不少于4 μg时治疗疾病有效,假若某病人一天中第一次服药为上午7:00,问:一天中怎样安排服药时间(共4次)效果最佳?