- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某商场在店庆一周年开展“购物折上折活动”:商场内所有商品按标价的八折出售,折后价格每满500元再减100元.如某商品标价为1500元,则购买该商品的实际付款额为1500×0.8-200=1000(元).设购买某商品得到的实际折扣率
.设某商品标价为
元,购买该商品得到的实际折扣率为
.
(Ⅰ)写出当
时,
关于
的函数解析式,并求出购买标价为1000元商品得到的实际折扣率;
(Ⅱ)对于标价在[2500,3500]的商品,顾客购买标价为多少元的商品,可得到的实际折扣率低于
?



(Ⅰ)写出当



(Ⅱ)对于标价在[2500,3500]的商品,顾客购买标价为多少元的商品,可得到的实际折扣率低于

据市场分析,南雄市精细化工园某公司生产一种化工产品,当月产量在10吨至25吨时,月生产总成本y(万元)可以看成月产量x(吨)的二次函数;当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元,为二次函数的顶点.写出月总成本y(万元)关于月产量x(吨)的函数关系.已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润?
在任意三角形ABC中,若角A,B,C的对边分别为
,我们有如下一些定理:①
;②三角形ABC的面积
.在三角形ABC中,角A=
,
,
,则三角形ABC的面积为( )






A.![]() | B.![]() | C.![]() | D.![]() |
有甲、乙两种商品,经营销售这两种商品所得的利润依次为M万元和N万元,它们与投入资金
万元的关系可由经验公式给出:M=
,N=
(
≥1).今有8万元资金投入经营甲、乙两种商品,且乙商品至少要求投资1万元,
设投入乙种商品的资金为
万元,总利润
;
(2)为获得最大利润,对甲、乙两种商品的资金投入分别是多少?共能获得多大利润?




设投入乙种商品的资金为


(2)为获得最大利润,对甲、乙两种商品的资金投入分别是多少?共能获得多大利润?
某地区发生里氏8.0级特大地震.地震专家对发生的余震进行了监测,记录的部分数据如下表:
注:地震强度是指地震时释放的能量.
地震强度(x)和震级(y)的模拟函数关系可以选用y=alg x+b(其中a,b为常数).利用散点图(如图)可知a的值等于________.(取lg 2=0.3进行计算)
强度(J) | 1.6×1019 | 3.2×1019 | 4.5×1019 | 6.4×1019 |
震级(里氏) | 5.0 | 5.2 | 5.3 | 5.4 |
注:地震强度是指地震时释放的能量.
地震强度(x)和震级(y)的模拟函数关系可以选用y=alg x+b(其中a,b为常数).利用散点图(如图)可知a的值等于________.(取lg 2=0.3进行计算)

某商场经营一批进价为
元/台的小商品,经调查得知如下数据.若销售价上下调整,销售量和利润大体如下:
(1)在下面给出的直角坐标系中,根据表中的数据描出实数对
的对应点,并写出
与
的一个函数关系式;

(2)请把表中的空格里的数据填上;
(3)根据表中的数据求
与
的函数关系式,并指出当销售单价为多少元时,才能获得最大日销售利润?

销售价(![]() | ![]() | ![]() | ![]() | ![]() |
日销售量(![]() | ![]() | ![]() | ![]() | ![]() |
日销售额(![]() | ![]() | | | |
日销售利润(![]() | ![]() | | | |
(1)在下面给出的直角坐标系中,根据表中的数据描出实数对




(2)请把表中的空格里的数据填上;
(3)根据表中的数据求


某公司试销某种“上海世博会”纪念品,每件按30元销售,可获利50%,设每件纪念品的成本为a元.
(1)试求a的值;
(2)公司在试销过程中进行了市场调查,发现销售量y(件)与每件售价x(元)满足关系y=-10x+800.设每天销售利润为W(元),求每天销售利润W(元)与每件售价x(元)之间的函数解析式;当每件售价为多少时,每天获得的利润最大?最大利润是多少?
(1)试求a的值;
(2)公司在试销过程中进行了市场调查,发现销售量y(件)与每件售价x(元)满足关系y=-10x+800.设每天销售利润为W(元),求每天销售利润W(元)与每件售价x(元)之间的函数解析式;当每件售价为多少时,每天获得的利润最大?最大利润是多少?
一医用放射性物质原来质量为a,每年衰减的百分比相同,当衰减一半时,所用时间是10年,根据需要,放射性物质至少要保留原来的,否则需要更换.已知到今年为止,剩余的为原来的
,
(1)求每年衰减的百分比;
(2)到今年为止,该放射性物质已衰减了多少年?
(3)今后至多还能用多少年?

(1)求每年衰减的百分比;
(2)到今年为止,该放射性物质已衰减了多少年?
(3)今后至多还能用多少年?