- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为
,雨速沿E移动方向的分速度为
.E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与
×S成正比,比例系数为
;(2)其它面的淋雨量之和,其值为
,记
为E移动过程中的总淋雨量,当移动距离d=100,面积S=
时.

(1)写出
的表达式
(2)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度
,使总淋雨量
最少.








(1)写出

(2)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度


燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v=5log2
,单位是m/s,其中Q表示燕子的耗氧量.
(1)试计算:燕子静止时的耗氧量是多少个单位?
(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?

(1)试计算:燕子静止时的耗氧量是多少个单位?
(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?
某公司拟投资100万元,有两种投资方案可供选择:一种是年利率为10%,按单利计算,5年后收回本金和利息;另一种是年利率为9%,按每年复利一次计算,5年后收回本金和利息.哪一种投资更有利?这种投资比另一种投资5年可多得利息多少元?(结果精确到0.01万元)
某医疗研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y与时间t之间近似满足如图所示的曲线.

(1)写出服药后y与t之间的函数关系式;
(2)据测定,每毫升血液中含药量不少于4 μg时治疗疾病有效,假若某病人一天中第一次服药为上午7:00,问:一天中怎样安排服药时间(共4次)效果最佳?

(1)写出服药后y与t之间的函数关系式;
(2)据测定,每毫升血液中含药量不少于4 μg时治疗疾病有效,假若某病人一天中第一次服药为上午7:00,问:一天中怎样安排服药时间(共4次)效果最佳?
如图2,直角梯形OABC位于直线x=t右侧的图形的面积为f(t).
(2)画出函数y=f(t)的图象.
图2
(1)试求函数f(t)的解析式;(2)画出函数y=f(t)的图象.
红豆生南国,春来发几枝?如图给出了红豆生长时间t(月)与枝数y的散点图,那么红豆生长时间与枝数的关系用下列哪个函数模型拟合最好?( )
A.y=2t | B.y=log2t | C.y=2t | D.y=t2 |
每年的3月12日是植树节,全国各地在这一天都会开展各种形式的植树活动,某市现有树木面积10万平方米,计划今后5年内扩大树木面积,现有两种方案如下:
方案一:每年植树1万平方米;
方案二:每年树木面积比上一年增加9%.
哪个方案较好?
方案一:每年植树1万平方米;
方案二:每年树木面积比上一年增加9%.
哪个方案较好?
复利是把前一期的利息和本金加在一起作本金,再计算下一期利息的一种计算利息的方法.某人向银行贷款10万元,约定按年利率7%复利计算利息.
(1)写出x年后,需要还款总数y(单位:万元)和x(单位:年)之间的函数关系式;
(2)计算5年后的还款总额(精确到元);
(3)如果该人从贷款的第二年起,每年向银行还款x元,分5次还清,求每次还款的金额x(精确到元).
(参考数据:1.073=1.225 0,1.074=1.310 8,1.075=1.402 551,1.076=1.500 730)
(1)写出x年后,需要还款总数y(单位:万元)和x(单位:年)之间的函数关系式;
(2)计算5年后的还款总额(精确到元);
(3)如果该人从贷款的第二年起,每年向银行还款x元,分5次还清,求每次还款的金额x(精确到元).
(参考数据:1.073=1.225 0,1.074=1.310 8,1.075=1.402 551,1.076=1.500 730)
在x克a%的盐水中,加入y克b%的盐水,浓度变为c%,则x与y的函数关系式为( )
A.y=![]() | B.y=![]() |
C.y=![]() | D.y=![]() |