- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
泉州与福州两地相距约200千米,一辆货车从泉州匀速行驶到福州,规定速度不得超过
千米/时,已知货车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度
千米/时的平方成正比,比例系数为0.01;固定部分为64元.
(1)把全程运输成本
元表示为速度
千米/时的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,货车应以多大速度行驶?


(1)把全程运输成本


(2)为了使全程运输成本最小,货车应以多大速度行驶?
2109年11月2日,中国药品监督管理局批准了治疗阿尔茨海默病(老年痴呆症)新药GV-971的上市申请,这款新药由我国科研人员研发,我国拥有完全知识产权.据悉,该款药品为胶囊,从外观上看是两个半球和一个圆柱组成,其中上半球是胶囊的盖子,粉状药物储存在圆柱及下半球中.胶囊轴截面如图所示,两头是半圆形,中间区域是矩形
,其周长为50毫米,药物所占的体积为圆柱体积和一个半球体积之和.假设
的长为
毫米.(注:
,
,其中
为球半径,
为圆柱底面积,
为圆柱的高)

(1)求胶囊中药物的体积
关于
的函数关系式;
(2)如何设计
与
的长度,使得
最大?









(1)求胶囊中药物的体积


(2)如何设计



一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积V与x的函数关系式,并求出函数的定义域.


近年来,我国大部分地区遭遇雾霾天气,给人们的健康、交通安全等带来了严重影响.经研究发现工业废气等污染物排放是雾霾形成和持续的重要因素,污染治理刻不容缓.为此,某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对空气的污染.已知过滤过程中废气的污染物数量
(单位:mg/L)与过滤时间
(单位:h)间的关系为
(
,
均为非零常数,e为自然对数的底数),其中
为
时的污染物数量.若经过5h过滤后还剩余90%的污染物.
(1)求常数
的值;
(2)试计算污染物减少到40%至少需要多长时间.(精确到1h,参考数据:
,
,
,
,
)







(1)求常数

(2)试计算污染物减少到40%至少需要多长时间.(精确到1h,参考数据:





如图给出了红豆生长时间t(月)与枝数y(枝)的散点图,用下列哪个函数模型拟合红豆生长时间与枝数的关系最好( )


A.指数函数:![]() | B.对数函数:![]() |
C.幂函数:![]() | D.二次函数:![]() |
某企业拟用10万元投资甲、乙两种商品.已知各投入
万元,甲、乙两种商品分别可获得
万元的利润,利润曲线
,
,如图所示.

(1)求函数
的解析式;
(2)应怎样分配投资资金,才能使投资获得的利润最大?





(1)求函数

(2)应怎样分配投资资金,才能使投资获得的利润最大?