刷题首页
题库
高中数学
题干
泉州与福州两地相距约200千米,一辆货车从泉州匀速行驶到福州,规定速度不得超过
千米/时,已知货车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度
千米/时的平方成正比,比例系数为0.01;固定部分为64元.
(1)把全程运输成本
元表示为速度
千米/时的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,货车应以多大速度行驶?
上一题
下一题
0.99难度 解答题 更新时间:2020-01-05 04:09:23
答案(点此获取答案解析)
同类题1
某化工企业2018年年底投入100万元,购入一套污水处理设备。该设备每年的运转费用是0.5万元,此外,每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元。设该企业使用该设备
年的年平均污水处理费用为
(单位:万元)
(1)用
表示
;
(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备。则该企业几年后需要重新更换新的污水处理设备。
同类题2
围建一个面积为360m
2
的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为
x
(单位:元).
(Ⅰ)将
y
表示为
x
的函数;
(Ⅱ)试确定
x
,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
同类题3
某厂家拟举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)
万件与年促销费用
万元(
)满足
(
为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).
(1)将该产品的年利润
万元表示为年促销费用
万元的函数;
(2)该厂家年促销费用投入多少万元时,厂家的利润最大?
同类题4
在三角形
中,
、
分别是
、
上的点,且
,
的面积为1,设
,
表示
的面积,则
与
的函数关系式为______.
同类题5
近年来大气污染防治工作得到各级部门的重视,某企业现有设备下每日生产总成本
(单位:万元)与日产量
(单位:吨)之间的函数关系式为
,现为了配合环境卫生综合整治,该企业引进了除尘设备,每吨产品除尘费用为
万元,除尘后当日产量
时,总成本
.
(1)求
的值;
(2)若每吨产品出厂价为59万元,试求除尘后日产量为多少时,每吨产品的利润最大,最大利润为多少?
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
分式型函数模型的应用
基本不等式求和的最小值