- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
且
,函数
.
(1)求
的定义域
及其零点;
(2)讨论并用函数单调性定义证明函数
在定义域
上的单调性;
(3)设
,当
时,若对任意
,存在
,使得
,求实数
的取值范围.



(1)求


(2)讨论并用函数单调性定义证明函数


(3)设






由于浓酸泄漏对河流形成了污染,现决定向河中投入固体碱,1个单位的固体碱在水中逐步溶化,水中的碱浓度
与时间
的关系,可近似地表示为
,只有当河流中碱的浓度不低于1时,才能对污染产生有效的抑制作用.
(1)如果只投放1个单位的固体碱,则能够维持有效抑制作用的时间有多长?
(2)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后,每一时刻河中的碱浓度认为是各次投放的碱在该时刻相应的碱浓度的和,求河中碱浓度可能取得的最大值.



(1)如果只投放1个单位的固体碱,则能够维持有效抑制作用的时间有多长?
(2)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后,每一时刻河中的碱浓度认为是各次投放的碱在该时刻相应的碱浓度的和,求河中碱浓度可能取得的最大值.
从金山区走出去的陈驰博士,在《自然—可持续性》杂志上发表的论文中指出:地球正在变绿,中国通过植树造林和提高农业效率,在其中起到了主导地位.已知某种树木的高度
(单位:米)与生长年限
(单位:年,tÎN*)满足如下的逻辑斯蒂函数:
,其中e为自然对数的底数. 设该树栽下的时刻为0. 
(1)需要经过多少年,该树的高度才能超过5米?(精确到个位)
(2)在第几年内,该树长高最快?




(1)需要经过多少年,该树的高度才能超过5米?(精确到个位)
(2)在第几年内,该树长高最快?