- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某同学在借助计算器求“方程
的近似解(精确到0.1)”时,设
,算得
;在以下过程中,他用“二分法”又取了4个
的值,计算了其函数值的正负,并得出判断:方程的近似解是
.那么他再取的
的4个值按从小到大的顺序排列的第2个值是 .






本小题满分12分)某商场购进一批单价为16元的日用品,经试验发现,若按每件20元的价格销售时,每月能卖360件,若按每件25元的价格销售时,每月能卖210件,假定每月销售件数y(件)是价格x(元/件)的一次函数.
(1)试求y与x之间的关系式;
(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?
(1)试求y与x之间的关系式;
(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润?每月的最大利润是多少?
甲乙两人连续
年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:

甲调查表明:每个鱼池平均产量从第
年
万只鳗鱼上升到第
年
万只;
乙调查表明:全县鱼池总个数由第
年
个减少到第
年
个.
(1)求第
年全县鱼池的个数及全县出产的鳗鱼总数;
(2)哪一年的规模(即总产量)最大?请说明理由.


甲调查表明:每个鱼池平均产量从第




乙调查表明:全县鱼池总个数由第




(1)求第

(2)哪一年的规模(即总产量)最大?请说明理由.
热力公司为某生活小区铺设暖气管道,为减少热量损耗,管道外表需要覆盖保温层.经测算要覆盖可使用20年的保温层,每厘米厚的保温层材料成本为2万元,小区每年的气量损耗用
(单位:万元)与保温层厚度
(单位:
)满足关系:
若不加保温层,每年热量损耗费用为5万元.设保温费用与20年的热量损耗费用之和为
.
(1)求
的值及
的表达式;
(2)问保温层多厚时,总费用
最小,并求最小值.





(1)求


(2)问保温层多厚时,总费用
