- 集合与常用逻辑用语
- 函数与导数
- + 二次函数的图象分析与判断
- 判断二次函数的单调性和求解单调区间
- 与二次函数相关的复合函数问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图1,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)

图1 图2 图3
(1)求抛物线的解析式
(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则
轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.
(3)如图3,抛物线上是否存在一点
,过点
作
轴的垂线,垂足为
,过点
作直线
,交线段
于点
,连接
,使
~
,若存在,求出点
的坐标;若不存在,说明理由.

图1 图2 图3
(1)求抛物线的解析式
(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则

(3)如图3,抛物线上是否存在一点












已知
,其中真命题的个数是_________个。
①若
无零点,则
对
x∈R成立;
②若
有且只有一个零点,则
必有两个零点;
③若方程
有两个不等实根,则方程
不可能无解.

①若



②若


③若方程

