- 集合与常用逻辑用语
- 函数与导数
- + 二次函数的图象分析与判断
- 判断二次函数的单调性和求解单调区间
- 与二次函数相关的复合函数问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,在定义域内有且只有一个零点,存在
, 使得不等式
成立. 若
,
是数列
的前
项和.
(I)求数列
的通项公式;
(II)设各项均不为零的数列
中,所有满足
的正整数
的个数称为这个数列
的变号数,令
(
为正整数),求数列
的变号数;
(Ⅲ)设
(
且
),使不等式
恒成立,求正整数
的最大值.







(I)求数列

(II)设各项均不为零的数列







(Ⅲ)设





在平面直角坐标系
中,设二次函数
的图象与两坐标轴有三个不同的交点. 经过这三个交点的圆记为
.
(I)求实数
的取值范围;
(II)求圆
的一般方程;
(III)圆
是否经过某个定点(其坐标与
无关)?若存在,请求出点的坐标;若不存在,请说明理由.



(I)求实数

(II)求圆

(III)圆

