- 集合与常用逻辑用语
- 函数与导数
- 二次函数的概念
- + 二次函数的性质与图象
- 二次函数的图象分析与判断
- 判断二次函数的单调性和求解单调区间
- 与二次函数相关的复合函数问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知二次函数
和函数
,
(1)若
为偶函数,试判断
的奇偶性;
(2)若方程
有两个不等的实根
,则
①试判断函数
在区间
上是否具有单调性,并说明理由;
②若方程
的两实根为
求使
成立的
的取值范围.


(1)若


(2)若方程


①试判断函数


②若方程




定义
ad﹣bc,已知函数f(x)
(x∈[0,π]),若f(x)的最大值与最小值的和为1,则实数m的值是( )


A.4+2![]() ![]() | B.4﹣2![]() ![]() |
C.4﹣2![]() | D.﹣4+2![]() |
已知函数
,若在定义域内存在
,使得
成立,则称
为函数
的局部对称点.
(1)若
、
且
,证明:函数
必有局部对称点;
(2)若函数
在区间
内有局部对称点,求实数
的取值范围;
(3)若函数
在
上有局部对称点,求实数
的取值范围.





(1)若




(2)若函数



(3)若函数


