- 集合与常用逻辑用语
- 函数与导数
- 二次函数的定义域
- 求二次函数的值域
- + 求二次函数的解析式
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知f(x)为二次函数,且f(x+1)+f(x﹣1)=2x2﹣4x,
(1)求f(x)的解析式;
(2)设g(x)=f(2x)﹣m•2x+1,其中x∈[0,1],m为常数且m∈R,求函数g(x)的最小值.
(1)求f(x)的解析式;
(2)设g(x)=f(2x)﹣m•2x+1,其中x∈[0,1],m为常数且m∈R,求函数g(x)的最小值.
已知a,b为常数,且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有两个相等实数根.
(1)求函数f(x)的解析式;
(2)当x∈[1,2]时,求f(x)的值域;
(1)求函数f(x)的解析式;
(2)当x∈[1,2]时,求f(x)的值域;
已知二次函数f(x)=ax2+bx+c,满足f(0)=2,f(x+1)-f(x)=2x-1.
(1)求函数f(x)的解析式;
(2)求f(x)在区间 [-1,2]上的最大值;
(3)若函数f(x)在区间
上单调,求实数
的取值范围.
(1)求函数f(x)的解析式;
(2)求f(x)在区间 [-1,2]上的最大值;
(3)若函数f(x)在区间


加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系
(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________ 分钟.


如图是一个二次函数y=f(x)的图象
(1)写出这个二次函数的零点
(2)求这个二次函数的解析式
(3)当实数k在何范围内变化时,函数g(x)=f(x)-kx在区间[-2,2]上是单调函数?
(1)写出这个二次函数的零点
(2)求这个二次函数的解析式
(3)当实数k在何范围内变化时,函数g(x)=f(x)-kx在区间[-2,2]上是单调函数?
