- 集合与常用逻辑用语
- 函数与导数
- + 二次函数的概念
- 二次函数的定义域
- 求二次函数的值域
- 求二次函数的解析式
- 二次函数的性质与图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义在
上的函数
,如果满足:对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界.
(
)判断函数
,
是否是有界函数,请写出详细判断过程.
(
)试证明:设
,
,若
,
在
上分别以
,
为上界,求证:函数
在
上以
为上界.
(
)若函数
在
上是以
为上界的有界函数,求实数
的取值范围.









(



(











(





试用函数单调性定义证明:
(1)f(x)=ax2+bx+c (a>0)在(-∞,
]上是减函数,在[
,+∞)是增函数;
(1)f(x)=ax2+bx+c (a>0)在(-∞,


f(x)=1-在(-∞,0)上是增函数.