- 集合与常用逻辑用语
- 函数与导数
- + 二次函数的概念
- 二次函数的定义域
- 求二次函数的值域
- 求二次函数的解析式
- 二次函数的性质与图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,直线
与反比例函数
的图象交于B、C两点,B(2,m)且m<2,正方形ABCD的顶点A、D在坐标轴上.
⑴ 求
,
的值;
⑵ 直接写出
时,
的取值范围. 


⑴ 求


⑵ 直接写出



设函数
在
上有定义,实数
和
满足
,若
在区间
上不存在最小值,则称
在
上具有性质
.
(1)当
,且
在区间
上具有性质
时,求常数
的取值范围;
(2)已知
(
),且当
时,
,判别
在区间
上是否具有性质
,试说明理由.










(1)当





(2)已知






