- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- + 一次函数与二次函数
- 二次函数的概念
- 二次函数的性质与图象
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(2015秋•岳阳校级期中)
(1)函数f(x)=loga(2x﹣1)﹣1的图象过定点(1,0);
(2)已知函数f(x)是定义在R上的偶函数,当x≤0时,f(x)=x(x+1),则f(x)的解析式为f(x)=x2﹣|x|;
(3)若loga
>1,则a的取值范围是(
,1);
(4)若2﹣x﹣2y>lnx﹣ln(﹣y)(x>0,y<0),则x+y<0.
其中所有正确命题的序号是 .
(1)函数f(x)=loga(2x﹣1)﹣1的图象过定点(1,0);
(2)已知函数f(x)是定义在R上的偶函数,当x≤0时,f(x)=x(x+1),则f(x)的解析式为f(x)=x2﹣|x|;
(3)若loga


(4)若2﹣x﹣2y>lnx﹣ln(﹣y)(x>0,y<0),则x+y<0.
其中所有正确命题的序号是 .
函数
数列
的前
项和
,且
同时满足:①不等式
的解集有且只有一个元素;②在定义域内存在
,使得不等式
成立.
(1)求函数
的表达式;
(2)求数列
的通项公式.








(1)求函数

(2)求数列

已知二次函数f(x)=x2+x的定义域为D恰是不等式
的解集,其值域为A,函数g(x)=x3﹣3tx+
的定义域为[0,1],值域为


A. (1)求函数f(x)定义域为D和值域A; (2)是否存在负实数t,使得A⊆B成立?若存在,求负实数t的取值范围;若不存在,请说明理由; (3)若函数g(x)=x3﹣3tx+ ![]() |
(2015秋•宝山区期末)给出以下命题:
(1)函数f(x)=
与函数g(x)=|x|是同一个函数;
(2)函数f(x)=ax+1(a>0且a≠1)的图象恒过定点(0,1);
(3)设指数函数f(x)的图象如图所示,若关于x的方程f(x)=
有负数根,则实数m的取值范围是(1,+∞);
(4)若f(x)=
为奇函数,则f(f(﹣2))=﹣7;
(5)设集合M={m|函数f(x)=x2﹣mx+2m的零点为整数,m∈R},则M的所有元素之和为15.
其中所有正确命题的序号为( )

(1)函数f(x)=

(2)函数f(x)=ax+1(a>0且a≠1)的图象恒过定点(0,1);
(3)设指数函数f(x)的图象如图所示,若关于x的方程f(x)=

(4)若f(x)=

(5)设集合M={m|函数f(x)=x2﹣mx+2m的零点为整数,m∈R},则M的所有元素之和为15.
其中所有正确命题的序号为( )

A.(1)(2)(3) | B.(1)(3)(5) | C.(2)(4)(5) | D.(1)(3)(4) |
已知一次函数y=f(x)满足f(x+1)=x+3a,且f(a)=3.
(1)求函数f(x)的解析式;
(2)若g(x)=x•f(x)+λf(x)+1在(0,2)上具有单调性,求实数λ的取值范围.
(1)求函数f(x)的解析式;
(2)若g(x)=x•f(x)+λf(x)+1在(0,2)上具有单调性,求实数λ的取值范围.
某星级酒店有客房
间,每天每间房费为
元时,天天客满.该酒店预提高档次升五星级,并提高房费.如果每天每间房费每增加
元,那么人住的房间数就减少
间,若不考虑其他因素,酒店将房费提高到多少元时,每天客房的总收入最高?



