- 集合与常用逻辑用语
- 函数与导数
- 判断函数的对称性
- 由对称性求函数的解析式
- 由对称性研究单调性
- + 函数对称性的应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
关于函数的对称性有如下结论:对于给定的函数y=f(x),x∈D,如果对于任意的x∈D都有f(a+x)+f(a﹣x)=2b成立(a,b为常数),则函数f(x)关于点(a,b)对称.
(1)用题设中的结论证明:函数f(x)=
关于点(3,﹣2);
(2)若函数f(x)既关于点(2,0)对称,又关于点(﹣2,1)对称,且当x∈(2,6)时,f(x)=2x+3x,求:
①f(﹣5)的值;
②当x∈(8k﹣2,8k+2),k∈Z时,f(x)的表达式.
(1)用题设中的结论证明:函数f(x)=

(2)若函数f(x)既关于点(2,0)对称,又关于点(﹣2,1)对称,且当x∈(2,6)时,f(x)=2x+3x,求:
①f(﹣5)的值;
②当x∈(8k﹣2,8k+2),k∈Z时,f(x)的表达式.
对于三次函数
,给出定义:设
是函数
的导数,
是
的导数,若方程
=0有实数解
,则称点(
,
)为函数
的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数
,则
____________.











