- 集合与常用逻辑用语
- 函数与导数
- 函数奇偶性的定义与判断
- + 由奇偶性求函数解析式
- 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,
是实数.
(1)若函数
是定义在
上的奇函数,求
的值,并求方程
的解;
(2)若
对任意的
恒成立,求
的取值范围;
(3)若
,方程
有解,求实数
的取值范围.


(1)若函数




(2)若



(3)若



已知函数
是定义在
上的偶函数,当
时,
现已画出函数
在
轴左侧的图象,如图所示.

(1)画出函数
在
轴右侧的图象,并写出函数
在
上的单调区间;
(2)求函数
在
上的解析式.







(1)画出函数




(2)求函数


已知奇函数f(x)=a
(a为常数).
(1)求a的值;
(2)若函数g(x)=|(2x+1)f(x)|﹣k有2个零点,求实数k的取值范围;
(3)若x∈[﹣2,﹣1]时,不等式f(x)
恒成立,求实数m的取值范围.

(1)求a的值;
(2)若函数g(x)=|(2x+1)f(x)|﹣k有2个零点,求实数k的取值范围;
(3)若x∈[﹣2,﹣1]时,不等式f(x)
