- 集合与常用逻辑用语
- 函数与导数
- + 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
定义在
上且满足下列两个条件:
①对任意
都有
;②当
时,有
.
(1)证明函数
在
上是奇函数;
(2)判断并证明
的单调性.
(3)若
,试求函数
的零点.


①对任意




(1)证明函数


(2)判断并证明

(3)若


函数
是定义域为
的非常值函数,且对任意
,有
,
,则
是( )






A.奇函数但非偶函数 | B.偶函数但非奇函数 |
C.奇函数又是偶函数 | D.非奇非偶函数 |