- 集合与常用逻辑用语
- 函数与导数
- + 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
其中
且
,则下列结论正确的是( )



A.函数![]() |
B.函数![]() |
C.函数![]() ![]() |
D.当![]() ![]() |
已知函数
.
(1)求函数
的定义域
,并判断
的奇偶性;
(2)如果当
时,
的值域是
,求
与
的值;
(3)对任意的
,
,是否存在
,使得
,若存在,求出
;若不存在,请说明理由.

(1)求函数



(2)如果当





(3)对任意的





已知函数
,
.
(1)求证:
是奇函数并求
的单调区间;
(2)分别计算
合
的值,由此概括出涉及函数
和
的对所有不等于零的实数
都成立的一个式,并加以证明.


(1)求证:


(2)分别计算




