- 集合与常用逻辑用语
- 函数与导数
- + 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知
为定义在实数集
上的函数,把方程
称为函数
的特征方程,特征方程的两个实根
、
(
),称为
的特征根.
(1)讨论函数
的奇偶性,并说明理由;
(2)已知
为给定实数,求
的表达式;
(3)把函数
,
的最大值记作
,最小值记作
,研究函数
,
的单调性,令
,若
恒成立,求
的取值范围.








(1)讨论函数

(2)已知


(3)把函数









已知函数
,设
,则
是( )



A.奇函数,在![]() |
B.奇函数,在![]() |
C.偶函数,在![]() ![]() |
D.偶函数,在![]() ![]() |