- 集合与常用逻辑用语
- 函数与导数
- + 利用函数单调性求最值
- 根据函数的最值求参数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数y=f(x),若给定非零实数a,对于任意实数x∈M,总存在非零常数T,使得af(x)=f(x+T)恒成立,则称函数y=f(x)是M上的a级T类周期函数,若函数y=f(x)是[0,+∞)上的2级2类周期函数,且当x∈[0,2)时,f(x)=
,又函数g(x)=﹣2lnx+
x2+x+m.若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,则实数m的取值范围是( )


A.(﹣∞,![]() | B.(﹣∞,![]() | C.[![]() | D.[![]() |
已知f(x)=
(x≠a).
(1)若a=﹣2,试证明f(x)在(﹣∞,﹣2)内单调递增;
(2)若a>0,且x∈(﹣∞,0),请直接写出f(x)的值域.

(1)若a=﹣2,试证明f(x)在(﹣∞,﹣2)内单调递增;
(2)若a>0,且x∈(﹣∞,0),请直接写出f(x)的值域.
已知f(x)=
,x∈[1,+∞).
(1)当a=
时,求函数f(x)的最小值;
(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.

(1)当a=

(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.