- 集合与常用逻辑用语
- 函数与导数
- 函数的单调性
- + 函数的最值
- 利用函数单调性求最值
- 根据函数的最值求参数
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于三个实数
、
、
,若
成立,则称
、
具有“性质
”.
(1)试问:①
,0是否具有“性质2”;
②
(
),0是否具有“性质4”;
(2)若存在
及
,使得
成立,且
,1具有“性质2”,求实数
的取值范围;
(3)设
,
,
,
为2019个互不相同的实数,点
(
)
均不在函数
的图象上,是否存在
,且
,使得
、
具有“性质2018”,请说明理由.







(1)试问:①

②


(2)若存在





(3)设






均不在函数





具有“性质2018”,请说明理由.
已知函数
的最小正周期为
,且其图象的一个对称轴为
,将函数
图象上所有点的橫坐标缩小到原来的
倍,再将图象向左平移
个单位长度,得到函数
的图象.
(1)求
的解析式,并写出其单调递增区间;
(2)求函数
在区间
上的零点;
(3)对于任意的实数
,记函数
在区间
上的最大值为
,最小值为
,求函数
在区间
上的最大值.







(1)求

(2)求函数


(3)对于任意的实数






