- 集合与常用逻辑用语
- 函数与导数
- 定义法判断函数的单调性
- 求函数的单调区间
- + 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于x=1对称,当x∈[0,1]时,f(x)=2x-1,
(1)求证:f(x)是周期函数;
(2)当x∈[1,2]时,求f(x)的解析式;
(3)计算f(0)+f(1)+f(2)+…+f(2013)的值.
(1)求证:f(x)是周期函数;
(2)当x∈[1,2]时,求f(x)的解析式;
(3)计算f(0)+f(1)+f(2)+…+f(2013)的值.
已知函数y=(2m+1)x+m–3.
(1)若函数图象经过原点,求m的值;
(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
(1)若函数图象经过原点,求m的值;
(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
已知函数f(x)是定义在R上的函数,若函数f(x+2016)为偶函数,且f(x)对任意x1,x2∈[2016,+∞)(x1≠x2),都有
<0,则( )

A.f(2019)<f(2014)<f(2017) |
B.f(2017)<f(2014)<f(2019) |
C.f(2014)<f(2017)<f(2019) |
D.f(2019)<f(2017)<f(2014) |
定义在区间(0,+∞)上的函数f(x)满足f()=f(x1)-f(x2),且当x>1时,f(x)>0.
(1)求f(1)的值,并判断f(x)的单调性;
(2)若f(4)=2,求f(x)在[5,16]上的最大值.