- 集合与常用逻辑用语
- 函数与导数
- + 函数的单调性
- 定义法判断函数的单调性
- 求函数的单调区间
- 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 函数的最值
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
定义在R上的函数
,则f(
)是( )


A.既是奇函数,又是增函数 | B.既是奇函数,又是减函数 |
C.既是偶函数,又是增函数 | D.既是偶函数,又是减函数 |
已知对任意x.y∈R,都有f(x+y)=f(x)+f(y)﹣t(t为常数)并且当x>0时,f(x)<t
(1)求证:f(x)是R上的减函数;
(2)若f(4)=﹣t﹣4,解关于m的不等式f(m2﹣m)+2>0.
(1)求证:f(x)是R上的减函数;
(2)若f(4)=﹣t﹣4,解关于m的不等式f(m2﹣m)+2>0.
定义在
上的函数
,
单调递增,
,若对任意
,存在
,使得
成立,则称
是
在
上的“追逐函数”.已知
,下列四个函数:
①
;②
;③
;④
.其中是
在
上的“追逐函数”的有()











①






A.![]() | B.![]() |
C.![]() | D.![]() |