刷题宝
  • 刷题首页
题库 高中数学

题干

已知对任意x.y∈R,都有f(x+y)=f(x)+f(y)﹣t(t为常数)并且当x>0时,f(x)<t
(1)求证:f(x)是R上的减函数;
(2)若f(4)=﹣t﹣4,解关于m的不等式f(m2﹣m)+2>0.
上一题 下一题 0.99难度 解答题 更新时间:2011-10-18 10:05:05

答案(点此获取答案解析)

同类题1

函数对任意的,都有,并且当时,.
(1)求证:在R上是增函数;
(2)若,解不等式.

同类题2

已知函数f(x),对任意的a,b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x<0时,f(x)>1.
(1)求证:f(x)是R上的减函数;
(2)若f(6)=7,解不等式f(3m2-2m-2)<4.

同类题3

已知函数f(x)=lnx+2x-6.
(1)证明:函数f(x)在其定义域上是增函数;
(2)证明:函数f(x)有且只有一个零点;
(3)求这个零点所在的一个区间,使这个区间的长度不超过.

同类题4

已知函数.
(1)用函数单调性的定义证明:函数在区间上为增函数;
(2)若,当时,求实数的取值范围.

同类题5

已知定义在上的函数是奇函数.
(1)求的值;
(2)判断的单调性,并用单调性定义证明;
(3)若对任意,不等式恒成立,求实数的取值范围.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数的单调性
  • 定义法判断函数的单调性
  • 函数单调性的应用
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)