- 集合与常用逻辑用语
- 函数与导数
- + 函数的单调性
- 定义法判断函数的单调性
- 求函数的单调区间
- 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 函数的最值
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
函数
的定义域为
,数列
是公差为
的等差数列,且
,记
,关于实数
,下列说法正确的是()







A.![]() |
B.![]() |
C.当![]() ![]() ![]() ![]() |
D.当![]() ![]() ![]() ![]() |
定义在
上的函数
,
单调递增,
,若对任意
,存在
,
使得
成立,则称
是
在
上的“追逐函数”.已知
,下列四个函数:
①
;②
;③
;④
.其中是
在
上的“追逐函数”
的有






使得





①






的有
A.![]() | B.![]() | C.![]() | D.![]() |
设函数
的定义域为
,如果存在正实数
,对于任意
都有
,且
恒成立,则称函数
为
上的“
型增函数”,已知函数
是定义在
上的奇函数,且当
时,
,若
为
上的“
型增函数”,则实数
的取值范围是______.
















