- 集合与常用逻辑用语
- 函数与导数
- + 函数的单调性
- 定义法判断函数的单调性
- 求函数的单调区间
- 函数单调性的应用
- 根据图像判断函数单调性
- 复合函数的单调性
- 函数的最值
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
[“数学抽象、逻辑推理”素养]设
是定义在
上的函数,若存在
,使得
在
上单调递增,在
上单调递减,则称
为
上的单峰函数,
为峰点,包含峰点的区间为含峰区间.求证:给定一个
上的单峰函数
,对任意的
,
,且
,若
,则
为含峰区间;若
,则
为含峰区间.


















已知函数f(x)=对于任意的x1≠x2,都有(x1-x2)[f(x2)-f(x1)]>0成立,则实数a的取值范围是( )
A.(-∞,3] | B.(-∞,3) | C.(3,+∞) | D.[1,3) |