如图甲,在等边三角形ABC内有一点P,且PA=2,PBPC=1,求∠BPC度数的大小和等边三角形ABC的边长.
解题思路是:将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP′.
(1)△PPB  三角形,△PPA  三角形,∠BPC  °;
(2)利用△BPC可以求出△ABC的边长为  
如图丙,在正方形ABCD内有一点P,且PABPPC=1;
(3)求∠BPC度数的大小;
(4)求正方形ABCD的边长.
当前题号:1 | 题型:解答题 | 难度:0.99
如图,菱形ABCD中,对角线AC、BD交于O点,DE∥AC,CE∥B
A.

(1)求证:四边形OCED为矩形;
(2)在BC上截取CF=CO,连接OF,若AC=16,BD=12,求四边形OFCD的面积.
当前题号:2 | 题型:解答题 | 难度:0.99
如图,在四边形ABCD中,AD∥BC,∠B=90°,AD=8cm,BC=10cm,AB=6cm,点Q从点A出发以1 cm/s的速度向点D运动,点P从点B出发以2 cm/s的速度向点C运动,P,Q两点同时出发,当点P到达点C时,两点同时停止运动.若设运动时间为t(s)
(1)直接写出:QD=______cm,PC=_______cm;(用含t的式子表示)
(2)当t为何值时,四边形PQDC为平行四边形?
(3)若点P与点C不重合,且DQ≠DP,当t为何值时,△DPQ是等腰三角形?    
当前题号:3 | 题型:解答题 | 难度:0.99
如图1,在矩形纸片ABCD中,AB=3cmAD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点EEFABPQF,连接BF
(1)求证:四边形BFEP为菱形;
(2)当点EAD边上移动时,折痕的端点PQ也随之移动;
①当点Q与点C重合时(如图2),求菱形BFEP的边长;
②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.
当前题号:4 | 题型:解答题 | 难度:0.99
如图,在Rt△ABC中,∠B=90°,AC=12,∠A=60°.点D从点C出发沿CA方向以每秒2个单位长的速度向A点匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点DE运动的时间是t秒(t>0).过点DDFBC于点F,连接DEEF
(1)AB的长是    
(2)在DE的运动过程中,线段EFAD的关系是否发生变化?若不变化,那么线段EFAD是何关系,并给予证明;若变化,请说明理由.
(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
当前题号:5 | 题型:解答题 | 难度:0.99
请阅读下列材料:
问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得,由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长,于是,画出如图②所示的分割线,拼出如图③所示的新正方形.

请你参考小东同学的做法,解决如下问题:
现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:直接画出图形,不要求写分析过程.)
当前题号:6 | 题型:解答题 | 难度:0.99
如图1,将边长为1的正方形ABCD压扁为边长为1的菱形ABC
A.在菱形ABCD中,∠A的大小为α,面积记为S.

(1)请补全下表:
 
30°
45°
60°
90°
120°
135°
150°
S

 
 
1
 

 
 
(2)填空:
由(1)可以发现正方形在压扁的过程中,菱形的面积随着∠A大小的变化而变化,不妨把菱形的面积S记为S(α).例如:当α=30°时,;当α=135°时,.由上表可以得到( ______°);( ______°),…,由此可以归纳出
(3) 两块相同的等腰直角三角板按如图的方式放置,AD=,∠AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).
当前题号:7 | 题型:解答题 | 难度:0.99
如图,四边形ABCD中,∠BCD=∠D=90°,E是边AB的中点.已知AD=1,AB=2.
(1)设BC=xCD=y,求y关于x的函数关系式,并写出定义域;
(2)当∠B=70°时,求∠AEC的度数;
(3)当△ACE为直角三角形时,求边BC的长.
当前题号:8 | 题型:解答题 | 难度:0.99
已知,点P是正方形ABCD内的一点,连PA、PB、P
A.
(1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1).
①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积;
②若PA=2,PB=4,∠APB=135°,求PC的长.
(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.
当前题号:9 | 题型:解答题 | 难度:0.99
如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D出发运动至点B停止时,点O的运动路径长为_____.
当前题号:10 | 题型:填空题 | 难度:0.99