- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 中点四边形
- 利用(特殊)平行四边形的对称性求阴影面积
- (特殊)平行四边形的动点问题
- 四边形中的线段最值问题
- + 四边形其他综合问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
(1)问题探究:如图①,在四边形ABCD中,AB∥CD,E是BC的中点,AE是∠BAD的平分线,则线段AB,AD,DC之间的等量关系为 ;
(2)方法迁移:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,E是BC的中点,AE是∠BAF的平分线,试探究线段AB,AF,CF之间的等量关系,并证明你的结论;
(3)联想拓展:如图③,AB∥CF,E是BC的中点,点D在线段AE上,∠EDF=∠BAE,试探究线段AB,DF,CF之间的数量关系,并证明你的结论.
(2)方法迁移:如图②,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,E是BC的中点,AE是∠BAF的平分线,试探究线段AB,AF,CF之间的等量关系,并证明你的结论;
(3)联想拓展:如图③,AB∥CF,E是BC的中点,点D在线段AE上,∠EDF=∠BAE,试探究线段AB,DF,CF之间的数量关系,并证明你的结论.

如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于E,PF⊥CD于F,连接EF,给出下列四个结论,其中正确结论的序号是( )
①AP=EF;②∠PFE=∠BAP;③△APD一定是等腰三角形;④PD=
EC.

①AP=EF;②∠PFE=∠BAP;③△APD一定是等腰三角形;④PD=


A.①②④ | B.②④ | C.①②③ | D.①③④ |
如图,正方形ABCD的对角线AC和BD相交于点O,正方形A1B1C1O的边OA1交AB于点E,OC1交BC于点F.
(1)求证:(BE+BF)2=2OB2;
(2)如果正方形ABCD的边长为a,那么正方形A1B1C1O绕O点转动的过程中,与正方形ABCD重叠部分的面积始终等于 (用含a的代数式表示)
(1)求证:(BE+BF)2=2OB2;
(2)如果正方形ABCD的边长为a,那么正方形A1B1C1O绕O点转动的过程中,与正方形ABCD重叠部分的面积始终等于 (用含a的代数式表示)

如图矩形,AB=2BC=4,E是AB二等分点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,沿直线EF折叠矩形ABCD,使点A落在直线l上,则DF=_____.

如图,在平面直角坐标系中,四边形
的顶点
是坐标原点,点
的坐标为
,点
的坐标为
,点
的坐标为
,点
分别为四边形
边上的动点,动点
从点
开始,以每秒1个单位长度的速度沿
路线向中点
匀速运动,动点
从
点开始,以每秒两个单位长度的速度沿
路线向终点
匀速运动,点
同时从
点出发,当其中一点到达终点后,另一点也随之停止运动。设动点运动的时间
秒(
),
的面积为
.
(1)填空:
的长是 ,
的长是 ;
(2)当
时,求
的值;
(3)当
时,设点
的纵坐标为
,求
与
的函数关系式;
(4)若
,请直接写出此时
的值.
























(1)填空:


(2)当


(3)当





(4)若



(问题情境)
如图①,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.
小丽给出的提示是:如图②,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
请根据小丽的提示进行证明.

(变式探究)如图③,当点P在BC延长线上时,其余条件不变,试猜想PD、PE、CF三者之间的数量关系并证明.
(结论运用)如图④,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值.

小丽给出的提示是:如图②,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
请根据小丽的提示进行证明.




(变式探究)如图③,当点P在BC延长线上时,其余条件不变,试猜想PD、PE、CF三者之间的数量关系并证明.
(结论运用)如图④,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值.
在所给的6×6方格中,每个小正方形的边长都是1.按要求画多边形,使它的各个顶点都在方格的顶点上.
(1)在图甲中画一个面积为5的平行四边形.
(2)在图乙中画一个面积为8的菱形(非正方形).
(1)在图甲中画一个面积为5的平行四边形.
(2)在图乙中画一个面积为8的菱形(非正方形).
