已知四边形ABCDAEFG都是正方形,

(1)如图1,EG分别在ABAD上,连CFHCF的中点,EHDH的位置关系是   ,数量关系是   
(2)如图2,在图1的基础上,把正方形AEFGA点顺时针旋转α(α为锐角),(1)中结论是否仍成立?若成立,请证明;若不成立,请说明理由.
(3)如图3,在(2)旋转过程中,当点F落在BC上,且AEAB   时,有AB平分EF
当前题号:1 | 题型:解答题 | 难度:0.99
我们规定:有一组邻边相等,且这组邻边的夹角为的凸四边形叫做“准筝形”。如图1,四边形ABCD中,若AB=AD,∠A=∘,则四边形ABCD是“准筝形”。

(1)如图2,CH是△ABC的高线,∠A=,∠ABC=,AB=2.求CH;
(2) 如图3,四边形ABCD中,BC=2,CD=4,AC=6,∠BCD=,且AD=BD,试判断四边形ABCD是不是“准筝形”,并说明理由。
小红是这样思考的:延长BC至点E,使CE=CD=4,连结DE,则△DCE是等边三角形,再说明△ACD△BED就可以了。请根据小红的思考完成本小题。
(3) 在(1)条件下,设D是△ABC所在平面内一点,当四边形ABCD是“准筝形”时,请直接写出四边形ABCD的面积;
当前题号:2 | 题型:解答题 | 难度:0.99
如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是______.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③SBEC=2SCEF;④∠DFE=3∠AEF.
当前题号:3 | 题型:填空题 | 难度:0.99
如图,在矩形中,点分别在边上,且.

(1)求证:四边形是平行四边形.
(2)若四边形是菱形,,求菱形的周长.
当前题号:4 | 题型:解答题 | 难度:0.99
在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD
(1)如图1,若∠DAB=120°,且∠B=90°,易证AD+BA=AC
(2)如图2,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.
(3)如图3,若∠DAB=90°,探究边AD、AB与对角线AC的数量关系并说明理由. 
当前题号:5 | 题型:解答题 | 难度:0.99
问题背景:
如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠D=90°.E、F分别是BC、CD上的点,且∠EAF=60°.为了探究图中线段BE,EF,FD之间的数量关系,小红的想法是:在EB的延长线上取一点G,使得BG=DF,连接AG,证明△ABG≌△ADF;再证明△AGE≌△AFE,从而得到结论,她的结论是_____________.
探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.
实际应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西40°的A处,舰艇乙在指挥中心南偏东80°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以50海里/小时的速度,同时舰艇乙沿北偏东50°的方向以70海里/小时的速度各自前进2小时后,在指挥中心观测到甲、乙两舰艇分别到达E,F处,两舰艇与指挥中心之间的夹角为70°,则此时两舰艇之间的距离为______海里.
当前题号:6 | 题型:解答题 | 难度:0.99
如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AGCF.下列结论:①△ABG≌△AFG;②BGGC;③AGCF;④SFGC=3.其中正确结论的个数是(  )
A.1B.2C.3D.4
当前题号:7 | 题型:单选题 | 难度:0.99
如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.
(1)AM=   ,AP= .(用含t的代数式表示)
(2)当四边形ANCP为平行四边形时,求t的值
(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,
①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由
②使四边形AQMK为正方形,求出AC的长.
当前题号:8 | 题型:解答题 | 难度:0.99
如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F,AB=6cm,AD=8cm.
(1)求证:△BDF是等腰三角形;
(2)如图2,过点D作DG∥BE,交BC于点G,连结FG交BD于点O.判断四边形FBGD的形状,并说明理由.
(3)在(2)的条件下,求FG的长.
当前题号:9 | 题型:解答题 | 难度:0.99
如图,在矩形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F,取EF的中点G,连接CG,BG,BD,DG,下列结论:

①BE=CD;
②∠DGF=135°;
③∠ABG+∠ADG=180°;
④若,则
其中正确的结论是 .(填写所有正确结论的序号)
当前题号:10 | 题型:填空题 | 难度:0.99