如图矩形ABCD中,AB=12,BC=8,E、F分别为AB、CD的中点,点P、Q从
A.C同时出发,在边AD、CB上以每秒1个单位向D、B运动,运动时间为t(0<t<8).

(1)如图1,连接PE、EQ、QF、PF,求证:无论t在0<t<8内取任何值,四边形PEQF总为平行四边形;
(2)如图2,连接PQ交CE于G,若PG=4QG,求t的值;
(3)在运动过程中,是否存在某时刻使得PQ⊥CE于G?若存在,请求出t的值:若不存在,请说明理由
当前题号:1 | 题型:解答题 | 难度:0.99
正方形、矩形、菱形都具有的特征是( )
A.对角线互相平分;B.对角线相等;
C.对角线互相垂直;D.对角线平分一组对角.
当前题号:2 | 题型:单选题 | 难度:0.99
已知四边形ABCD的对角线AC=8,BD=6,且,P、Q、R、S分别是AB、BC、CD、DA的中点,则PR2+QS2的值是__________
当前题号:3 | 题型:填空题 | 难度:0.99
如图,四边形ABCD为菱形,点E为对角线AC上的一个动点,连结DE并延长交AB于点F,连结B
A.

(1)如图①,求证:∠AFD=∠EBC;
(2)如图②,若DE=EC且BE⊥AF,求∠DAB的度数;
(3)若∠DAB=90°且当△BEF为等腰三角形时,求∠EFB的度数(只写出条件与对应的结果)
当前题号:4 | 题型:解答题 | 难度:0.99
如图,四边形ABCD中,点E在边CD上,连结AE、B
A.给出下列五个关系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.将其中的三个关系式作为题设,另外两个作为结论,构成一个命题.

⑴用序号写出一个真命题(书写形式如:如果×××,那么××);并给出证明;
⑵用序号再写出三个真命题(不要求证明)
当前题号:5 | 题型:解答题 | 难度:0.99
以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.
(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);
(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),
①试用含α的代数式表示∠HAE;
②求证:HE=HG;
③四边形EFGH是什么四边形?并说明理由.
当前题号:6 | 题型:解答题 | 难度:0.99
如图,在△ABC中,D是BC的中点,E是AD的中点,过A点作BC的平行线交BE的延长线于F,连接CF.

(1)线段AF与CD相等吗?为什么?
(2)如果AB=AC,试猜测四边形ADCF是怎样的特殊四边形,并说明理由.
当前题号:7 | 题型:解答题 | 难度:0.99
已知Rt△ABD中,边AB=OB=1,∠ABO=90°
问题探究:
(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为    
(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C的距离.
问题解决:
(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.
当前题号:8 | 题型:解答题 | 难度:0.99
如图,在ABCD 中,∠ADB=90°,点 E AB 边的中点,点 F CD 边的中点.
(1)求证:四边形 DEBF 是菱形;
(2)当∠A 等于多少度时,四边形 DEBF 是正方形?并说明你的理由.
当前题号:9 | 题型:解答题 | 难度:0.99
在平面直角坐标系中,A(a,0),C(0,c)且满足:(a+6)2+=0,长方形ABCO在坐标系中(如图),点O为坐标系的原点.

(1)求点B的坐标.
(2)如图1,若点M从点A出发,以2个单位/秒的速度向右运动(不超过点O),点N从原点O出发,以1个单位/秒的速度向下运动(不超过点C),设M、N两点同时出发,在它们运动的过程中,四边形MBNO的面积是否发生变化?若不变,求其值;若变化,求变化的范围.
(3)如图2,E为x轴负半轴上一点,且∠CBE=∠CEB,F是x轴正半轴上一动点,∠ECF的平分线CD交BE的延长线于点D,在点F运动的过程中,请探究∠CFE与∠D的数量关系,并说明理由
当前题号:10 | 题型:解答题 | 难度:0.99