- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- + 四边形综合
- 中点四边形
- 利用(特殊)平行四边形的对称性求阴影面积
- (特殊)平行四边形的动点问题
- 四边形中的线段最值问题
- 四边形其他综合问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在四边形ABCD中,AB∥DC,AD=BC=6,DC=10,AB=13,点P从点A出发以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动时间为____秒.

如图①,在矩形
中,动点
从
出发,以相同的速度,沿
方向运动到点
处停止.设点
运动的路程为
,
面积为
,
与
的函数图象如图②所示.
(1)矩形
的面积为 ;
(2)如图③,若点
沿
边向点
以每秒1个单位的速度移动,同时,点
从点
出发沿
边向点
以每秒2个单位的速度移动.如果
、
两点在分别到达
、
两点后就停止移动,回答下列问题:
①当运动开始
秒时,试判断
的形状;
②在运动过程中,是否存在这样的时刻,使以
为圆心,
的长为半径的圆与矩形
的对角线
相切,若存在,求出运动时间;若不存在,请说明理由.











(1)矩形

(2)如图③,若点











①当运动开始


②在运动过程中,是否存在这样的时刻,使以





如图,Rt△ACB中,∠C=90°,AC=5cm,BC=2cm,点P从B点出发以1cm/s的速度沿CB延长线运动,运动时间为t秒.以AP为斜边在其上方构造等腰直角△APD.当t=1秒时,则CD=_____cm,当D运动的路程为4
cm时,则P运动时间t=_____秒.


阅读理解:如图1,如果四边形ABCD满足AB=AD,CB=CD,∠B=∠D=90°,那么我们把这样的四边形叫做“完美筝形”.将一张如图1所示的“完美筝形”纸片ABCD先折叠成如图2所示形状,再展开得到图3,其中CE,CF为折痕,∠BCE=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB′,FD′相交于点O.
简单应用:
(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是 ;
(2)当图3中的∠BCD=120°时,∠AEB′= ;
拓展提升:
(3)当图2中的四边形AECF为菱形时,对应图3中的四边形CD′OB′是否是“完美筝形”?请说明理由.
简单应用:
(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是 ;
(2)当图3中的∠BCD=120°时,∠AEB′= ;
拓展提升:
(3)当图2中的四边形AECF为菱形时,对应图3中的四边形CD′OB′是否是“完美筝形”?请说明理由.

如图,矩形ABCD中,AB=2
,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是( )



A.4![]() | B.2![]() | C.2![]() | D.4![]() |
如图在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD、CB为边作平行四边形CDEB,当AD=_____,平行四边形CDEB为菱形.

如图,在四边形ABCD中,AB=CD,E、F、G、H分别为AD、BC、BD、AC的中点,顺次连接E、G、F、H.
(1)猜想四边形EGFH是什么特殊的四边形,并说明理由;
(2)当∠ABC与∠DCB满足什么关系时,四边形EGFH为正方形,并说明理由;
(3)猜想:∠GFH、∠ABC、∠DCB三个角之间的关系.直接写出结果____________.
(1)猜想四边形EGFH是什么特殊的四边形,并说明理由;
(2)当∠ABC与∠DCB满足什么关系时,四边形EGFH为正方形,并说明理由;
(3)猜想:∠GFH、∠ABC、∠DCB三个角之间的关系.直接写出结果____________.

如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论:
(1)
;(2)
;(3)若
,则
;(4)
.其中一定成立的是_____ (把所有正确结论的序号都填在横线上)
(1)





