刷题首页
题库
初中数学
题干
如图,矩形
ABCD
中,
AB
=6,
MN
在边
AB
上运动,
MN
=3,
AP
=2,
BQ
=5,
PM
+
MN
+
NQ
最小值是
_____
.
上一题
下一题
0.99难度 填空题 更新时间:2018-11-30 08:22:02
答案(点此获取答案解析)
同类题1
(操作)BD是矩形ABCD的对角线,
,
,将
绕着点B顺时针旋转
(
)得到
,点A、D的对应点分别为E、
A.若点E落在BD上,如图①,则
________.
(探究)当点E落在线段DF上时,CD与BE交于点
B.其它条件不变,如图②.
(1)求证:
;
(2)CG的长为________.
同类题2
如图,在等腰梯形ABCD中,
,对角线
于点O,
,垂足分别为E、F,设AD=a,BC=b,则四边形AEFD的周长是( )
A.
B.
C.
D.
同类题3
阅读理解:如图1,我们把对角线互相垂直的四边形叫做垂美四边形.垂美四边形有如下性质:
垂美四边形的两组对边的平方和相等.
已知:如图1,四边形ABCD是垂美四边形,对角线AC、BD相交于点
A.
求证:AD
2
+BC
2
=AB
2
+CD
2
证明:∵四边形ABCD是垂美四边形
∴AC⊥BD,
∴∠AED=∠AEB=∠BEC=∠CED=90°,
由勾股定理得,AD
2
+BC
2
=AE
2
+DE
2
+BE
2
+CE
2
,
AB
2
+CD
2
=AE
2
+BE
2
+CE
2
+DE
2
,
∴AD
2
+BC
2
=AB
2
+CD
2
.
拓展探究:
(1)如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.
(2)如图3,在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;
问题解决:
如图4,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5.求GE长.
同类题4
问题情境
在四边形ABCD中,BA=BC,DC⊥AC,过点D作DE∥AB交BC的延长线于点E,M是边AD的中点,连接MB,M
A.
特例探究
(1)如图1,当∠ABC=90°时,写出线段MB与ME的数量关系,位置关系;
(2)如图2,当∠ABC=120°时,试探究线段MB与ME的数量关系,并证明你的结论;
拓展延伸
(3)如图3,当∠ABC=α时,请直接用含α的式子表示线段MB与ME之间的数量关系.
相关知识点
图形的性质
四边形
特殊的平行四边形
四边形综合
四边形其他综合问题