- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- 直角三角形斜边上的中线
- + 矩形的判定与性质综合
- 根据矩形的性质与判定求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,矩形ABCD中,AB=6,BC=8,E是AD边上一点,连接CE,将△CDE沿CE翻折,点D的对应点是F,连接AF,当△AEF是直角三角形时,AF的值是( )


A.4 | B.2![]() | C.4,2![]() | D.4,5,2![]() |
如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=OC,连接CE、OE,连接AE交OD于点F.
(1)求证:OE=CD;
(2)若菱形ABCD的边长为6,∠ABC=60°,求AE的长.
(1)求证:OE=CD;
(2)若菱形ABCD的边长为6,∠ABC=60°,求AE的长.

如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F,AD=12,DC=18.
(1)证明:△ADF≌△AB′E;
(2)求线段AF的长度.
(3)求△AEF的面积.
(1)证明:△ADF≌△AB′E;
(2)求线段AF的长度.
(3)求△AEF的面积.

如图,在Rt△ABC中,∠C=90°,BC=4,AB=6,点D是边BC上的动点,以AB为对角线的所有▱ADBE中,DE的最小值为( )


A.2 | B.4 | C.6 | D.2![]() |
如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB边上(不与A、B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是( )




A.2 | B.3 | C.![]() | D.![]() |
如图,矩形ABCD的对角线AC、BD交于点O,E为AB的中点,G为BC延长线上一点,射线EO与∠ACG的角平分线交于点F,若AB=8,BC=6,则线段EF的长为_____ .

如图,方格纸中每个小正方形的边长均为1,线段AB的端点均在小正方形的顶点上.
(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;
(2)在图中画出以线段AB为一腰,底边长为
的等腰三角形ABE,点E在小正方形的顶点,则CE= ;
(3)F是边AD上一动点,则CF+EF的最小值是 .
(1)在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;
(2)在图中画出以线段AB为一腰,底边长为

(3)F是边AD上一动点,则CF+EF的最小值是 .

如图,已知矩形ABCD,AB=4,BC=5.请用尺规作图画出符合要求的图形,并标注必要的字母及结论(保留作图痕迹,不要求写作法).

(1)在图1的矩形ABCD中画出一个面积最大的菱形.
(2)我们通常把长与宽之比为
:1的矩形称为标准矩形,请你在图2的矩形ABCD中画出一个面积最大的标准矩形.

(1)在图1的矩形ABCD中画出一个面积最大的菱形.
(2)我们通常把长与宽之比为

已知在△ABC中,AC=3,BC=4,AB=5,点P在AB上(不与A、B重合),过P作PE⊥AC,PF⊥BC,垂足分别是E、F,连结EF,M为EF的中点,则CM的最小值为____________.
