- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 矩形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- 矩形与折叠问题
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在矩形ABCD中,AD=8,AB=4,将矩形ABCD折叠,使点A与点C重合,折痕为MN.给出以下四个结论:①△CDM≌△CEN;②△CMN是等边三角形;③CM=5;④BN=3.其中正确的结论序号是_____.

如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(5,0)、(0,4),点P是线段BC上的动点,当△PBA是等腰三角形时,则P点的坐标是______.

如图,在矩形ABCD纸片中,AB=6,AD=8,将矩形纸片ABCD折叠,使点B与点D重合,则折痕EF的长为( )


A.![]() |
B.![]() |
C.8 |
D.7 |
如图,在矩形ABCD中,P是边AD上的动点PE⊥AC于点E,PF⊥BD于点F,如果AB=5,AD=12.那么PE+PF=( )


A.![]() | B.![]() | C.![]() | D.![]() |
已知,一张矩形纸片ABCD,把顶点A和C叠合在一起,得折痕EF(如图).
(1)猜猜四边形AECF是什么特殊四边形,并证明你的猜想;
(2)若AB=9cm,BC=3cm,求折痕EF的长.
(1)猜猜四边形AECF是什么特殊四边形,并证明你的猜想;
(2)若AB=9cm,BC=3cm,求折痕EF的长.

如图,把矩形纸条ABCD沿EF、GH同时折叠,B、C两点恰好落在AD边的P点处,若∠FPH=90°,PF=8,PH=6,则矩形ABCD的边BC长为_____ .

如图,在矩形ABCD中,AB=4,BC=8,把△ABC沿着AC向上翻折得到△AEC,EC交AD边于点F,则点F到AC的距离是_____.

如图,在矩形ABCD中,AB=3,BC=4,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰落在∠BCD的平分线上时,则CA1的长为_______
