- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 矩形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- 矩形与折叠问题
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在一张长方形纸片ABCD中,AB=25cm,AD=20cm,现将这张纸片按下列图示方法折叠,请解决下列问题.
(1)如图(1),折痕为DE,点A的对应点F在CD上,求折痕DE的长;
(2)如图(2),H,G分别为BC,AD的中点,A的对应点F在HG上,折痕为DE,求重叠部分的面积;
(3)如图(3),在图(2)中,把长方形ABCD沿着HG对开,变成两张长方形纸片,按图示方式将两张纸片任意叠合后,判断重叠四边形的形状,并证明;
(4)在(3)中,重叠四边形的周长是否存在最大值或最小值?如果存在,试求出来;如果不存在,试简要说明理由.

(1)如图(1),折痕为DE,点A的对应点F在CD上,求折痕DE的长;
(2)如图(2),H,G分别为BC,AD的中点,A的对应点F在HG上,折痕为DE,求重叠部分的面积;
(3)如图(3),在图(2)中,把长方形ABCD沿着HG对开,变成两张长方形纸片,按图示方式将两张纸片任意叠合后,判断重叠四边形的形状,并证明;
(4)在(3)中,重叠四边形的周长是否存在最大值或最小值?如果存在,试求出来;如果不存在,试简要说明理由.

如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为 ( )


A.3∶2 | B.4∶3 | C.9∶4 | D.16∶9 |
如图所示,将一张长方形纸片斜折过去,使顶点A落在A/处,BC为折痕,然后再把BE折过去,使之与BA重合,折痕为BD,若∠ABC=58°,则求∠E/BD的度数是____________ .

在数学研究课上,老师出示如图1所示的长方形纸条
,
,
,然后在纸条上任意画一条截线段
,将纸片沿
折叠,
与
交于点
,得到
,如图2所示:

(1)若
,求
的大小;
(2)改变折痕
位置,判断
的形状,并说明理由;
(3)爱动脑筋的小明在研究
的面积时,发现
边上的高始终是个不变的值.根据这一发现,他很快研究出
的面积最小值为
,求
的大小;
(4)小明继续动手操作,发现了
面积的最大值,请你求出这个最大值.










(1)若


(2)改变折痕


(3)爱动脑筋的小明在研究





(4)小明继续动手操作,发现了

