- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 多边形及其内角和
- 平行四边形
- + 特殊的平行四边形
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
小宇将两张长为8宽为2的矩形条交叉如图①,发现重叠部分可能是一个菱形.
(1)请你帮助小宇证明四边形ABCD是菱形.
(2)小宇又发现:如图②时,菱形ABCD的周长最小,等于 ;
(3)如图③时菱形ABCD的周长最大,求此时菱形ABCD的周长.
(1)请你帮助小宇证明四边形ABCD是菱形.
(2)小宇又发现:如图②时,菱形ABCD的周长最小,等于 ;
(3)如图③时菱形ABCD的周长最大,求此时菱形ABCD的周长.

如图,已知△ABC中,AB=AC,AD是角平分线,F为BA延长线上的一点,AE平分∠FAC,DE∥BA交AE于E.求证:四边形ADCE是矩形.

用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是( )


A.一组邻边相等的四边形是菱形 | B.四边都相等的四边形是菱形 |
C.对角线互相垂直的平行四边形是菱形 | D.每条对角线平分一组对角的平行四边形是菱形 |
如图,正方形ABCD中,对角线AC=8cm.射线AF⊥AC,垂足为A.动点P从点C出发在CA上运动,动点Q从点A出发在射线AF上运动,两点的运动速度都是2cm/s.若两点同时出发,多少时间后,四边形AQBP是特殊四边形?请说明特殊四边形的名称及理由.

如图,O是菱形ABCD的对角线的交点,E、F分别是OA、OC的中点,下列结论:①四边形BFDE是菱形;②S四边形ABCD=EF×BD;③∠ADE=∠EDO;④△DEF是轴对称图形.其中正确的结论有( )


A.1个 | B.2个 | C.3个 | D.4个 |
下列判断正确的是( )
A.有一组邻边相等的平行四边形是正方形 |
B.对角线相等的菱形是正方形 |
C.两条对角线互相垂直的平行四边形是正方形 |
D.有一个角是直角的平行四边形是正方形 |
先阅读然后解决问题:
(阅读)如图(1),在▱ABCD中,过点D作DE⊥AB于点E沿DE线将△DEA剪切下来,并平移△DEA,使其拼接在△CE′B处这样,原来ABCD就变成一个矩形EE′CD.
(问题解决)如图(2),将△ABC通过剪切和拼接,得到一个矩形.要求:
(1)剪切线用实线,拼接图用虚线;
(2)说明剪下的图形是怎样运动拼接的;
(3)加注必要的字母,拼接后的非重合字母在原字母的右上角标注“′”,如:E′
(阅读)如图(1),在▱ABCD中,过点D作DE⊥AB于点E沿DE线将△DEA剪切下来,并平移△DEA,使其拼接在△CE′B处这样,原来ABCD就变成一个矩形EE′CD.
(问题解决)如图(2),将△ABC通过剪切和拼接,得到一个矩形.要求:
(1)剪切线用实线,拼接图用虚线;
(2)说明剪下的图形是怎样运动拼接的;
(3)加注必要的字母,拼接后的非重合字母在原字母的右上角标注“′”,如:E′
