- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 多边形及其内角和
- 平行四边形
- + 特殊的平行四边形
- 矩形的性质
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )


A.AB=CD | B.AD=BC | C.AB=BC | D.AC=BD |
如图,四边形ABCD中,AD∥BC,∠BCD=90°,AD=6,
BC=3,DE⊥AB于E,AC交DE于


A. (1)AE·AB的值为 (2)若CD=4,求 ![]() (3)若CD=6,过A作AM∥CD交CE的延长线于M,求 ![]() |

已知,点P是正方形ABCD内的一点,连PA、PB、P
A. (1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1). ①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积; ②若PA=2,PB=4,∠APB=135°,求PC的长. (2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上. ![]() |
(2013衡阳)如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.证明:AE2+CF2的值是一个常数.

如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AB,BC边上的中点,连接EF.若
,BD=4,则菱形ABCD的周长为( )



A.4 | B.![]() | C.![]() | D.28 |
阅读材料:
我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;比如我们通过学习特殊的四边形,即平行四边形(继续学习它们的特殊类型如矩形、菱形等)来逐步认识四边形;

我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;
请解决以下问题:
如图,我们把满足AB=AD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;
⑴写出筝形的两个性质(定义除外);
⑵写出筝形的两个判定方法(定义除外),并选出一个进行证明.
我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;比如我们通过学习特殊的四边形,即平行四边形(继续学习它们的特殊类型如矩形、菱形等)来逐步认识四边形;

我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;
请解决以下问题:
如图,我们把满足AB=AD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;
⑴写出筝形的两个性质(定义除外);
⑵写出筝形的两个判定方法(定义除外),并选出一个进行证明.

如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,B
A.![]() (1)求证:四边形AEBD是矩形; (2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由. |
已知:如图,平行四边形ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点
A.![]() ![]() (1)求证:△AOD≌△EOC; (2)连接AC,DE,当∠B=∠AEB= °时,四边形ACED是正方形?请说明理由. |