如图,在△ABC中,∠ACB=90°,AC=2,BC=4,D、E分别是边AB、BC的中点,点P从点C出发,沿线段CD方向以每秒1个单位长度的速度运动,当点P与点D不重合时,以EP、ED为邻边作▱EDFP,设点P的运动时间为t(秒).

(1)求AB长.
(2)当∠DPF=∠PFD时,求t的值.
(3)当点P在线段CD上时,设▱EDFP与△ABC重叠部分图形的面积为y(平方单位),求y与t之间的函数关系式.
(4)连结AF,当△AFD的面积与△PDE的面积相等时,直接写出t的值.
当前题号:1 | 题型:解答题 | 难度:0.99
如图,AC是矩形ABCD的对角线,AB=2,BC=2,点E,F分别是线段AB,AD上的点,连接CE,CF.当∠BCE=∠ACF,且CE=CF时,AE+AF="(" ).
A.2B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=,则FG的长为    

 
当前题号:3 | 题型:填空题 | 难度:0.99
如图,在四边形ABCD中,已知AB=BC=CD,∠BAD和∠CDA均为锐角,点F是对角线BD上的一点,EF∥AB交AD于点E,FG∥BC交DC于点G,四边形EFGP是平行四边形,给出如下结论:

①四边形EFGP是菱形;
②△PED为等腰三角形;
③若∠ABD=90°,则△EFP≌△GPD;
④若四边形FPDG也是平行四边形,则BC∥AD且∠CDA=60°.
其中正确的结论的序号是 (把所有正确结论的序号都填在横线上).
当前题号:4 | 题型:填空题 | 难度:0.99
张萌和小平两人打算各用一张正方形的纸片ABCD折出一个等边三角形,两人作法如下:张萌:如图1,将纸片对折得到折痕EF,沿点B翻折纸片,使点A落在EF上的点M处,连接CM,△BCM即为所求;小平:如图2,将纸片对折得到折痕EF,沿点B翻折纸片,使点C落在EF上的点M处,连接BM,△BCM即为所求,对于两人的作法,下列判断正确的是()
A.小平的作法正确,张萌的作法不正确
B.两人的作法都不正确
C.张萌的作法正确,小平的作法不正确
D.两人的作法都正确
当前题号:5 | 题型:单选题 | 难度:0.99
在正方形ABCD中,BD是一条对角线,点E在直线CD上(与点C,D不重合),连接AE,平移△ADE,使点D移动到点C,得到△BCF,过点F作FG⊥BD于点G,连接AG,EG.

(1)问题猜想:如图1,若点E在线段CD上,试猜想AG与EG的数量关系是____________,位置关系是____________;
(2)类比探究:如图2,若点E在线段CD的延长线上,其余条件不变,小明猜想(1)中的结论仍然成立,请你给出证明;
(3)解决问题:若点E在线段DC的延长线上,且∠AGF=120°,正方形ABCD的边长为2,请在备用图中画出图形,并直接写出DE的长度.
当前题号:6 | 题型:解答题 | 难度:0.99
如图,矩形ABCD中,AD=5,AB=3,在BC边上取一点E,使BE=4,连结AE,沿AE剪下△ABE,将它平移至△DCF的位置,拼成四边形AEFD.

(1)求证:四边形AEFD是菱形;
(2)求四边形AEFD的两条对角线的长.
当前题号:7 | 题型:解答题 | 难度:0.99
已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB,OC为邻边作▱OBFC,连接OF与BC交于点H,再连接EF.

(1)如图1,若△ABC为等边三角形,求证:①EF⊥BC;②EF=BC;
(2)如图2,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;
(3)如图3,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间的数量关系.
当前题号:8 | 题型:解答题 | 难度:0.99
如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,折痕与AC边交于点E,分别过点D、E作BC的垂线,垂足为Q、P,称为第1次操作,记四边形DEPQ的面积为S1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,折痕与AC边交于点E1,分别过点D1、E1作BC的垂线,垂足为Q1、P1,称为第2次操作,记四边形D1E1P1Q1的面积为S2;按上述方法不断操作下去…,若△ABC的面积为1,则Sn的值为()
A.B.C.D.
当前题号:9 | 题型:单选题 | 难度:0.99
如图,菱形ABCD的对角线AC,BD相交于点O,点E,F分别是边AB,AD的中点.

(1)请判断△OEF的形状,并证明你的结论;
(2)若AB=13,AC=10,请求出线段EF的长.
当前题号:10 | 题型:解答题 | 难度:0.99