已知:O为矩形ABCD对角线的交点,DE∥AC,CE∥B
A.试判断四边形OCED的形状,并说明理由.
当前题号:1 | 题型:解答题 | 难度:0.99
如图,在菱形ABCD中,AB=6,∠ABC=60°,AH⊥BC于点H.动点E从点B出发,沿线段BC向点C以每秒2个单位长度的速度运动.过点E作EF⊥AB,垂足为点F.点E出发后,以EF为边向上作等边三角形EFG,设点E的运动时间为t秒,△EFG和△AHC的重合部分面积为S.
(1)CE=     (含t的代数式表示).
(2)求点G落在线段AC上时t的值.
(3)当S>0时,求S与t之间的函数关系式.
(4)点P在点E出发的同时从点A出发沿A-H-A以每秒2个单位长度的速度作往复运动,当点E停止运动时,点P随之停止运动,直接写出点P在△EFG内部时t的取值范围.
当前题号:2 | 题型:解答题 | 难度:0.99
如图,直线l1∥l2,正方形ABCD的顶点A在l1上,顶点B、C、D在l1下方,等边三角形DEF的顶点F在上l2,顶点D、E在l2上方,且点A、D、F在同一直线上,若∠2=60°,则∠1的大小为()
A.30°B.60°C.45°D.15°
当前题号:3 | 题型:单选题 | 难度:0.99
如图①,在△ABC中,AB=7,tanA=,∠B=45°.点P从点A出发,沿AB方向以每秒1个单位长度的速度向终点B运动(不与点A、B重合),过点P作PQ⊥AB.交折线AC-CB于点Q,以PQ为边向右作正方形PQMN,设点P的运动时间为t(秒),正方形PQMN与△ABC重叠部分图形的面积为S(平方单位).
(1)直接写出正方形PQMN的边PQ的长(用含t的代数式表示).
(2)当点M落在边BC上时,求t的值.
(3)求S与t之间的函数关系式.
(4)如图②,点P运动的同时,点H从点B出发,沿B-A-B的方向做一次往返运动,在B-A上的速度为每秒2个单位长度,在A-B上的速度为每秒4个单位长度,当点H停止运动时,点P也随之停止,连结MH.设MH将正方形PQMN分成的两部分图形面积分别为S1、S2(平方单位)(0<S1<S2),直接写出当S2≥3S1时t的取值范围.
当前题号:4 | 题型:解答题 | 难度:0.99
如图,AC是四边形ABCD的对角线,∠B=90°,∠ADC=∠ACB+45°,BC=AB+,若AC=CD,则边AD的长为
当前题号:5 | 题型:填空题 | 难度:0.99
如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:
①AG⊥BE;②BG=4GE;③S△BHE=S△CHD;④∠AHB=∠EHD.
其中正确的个数是( )
A.1B.2C.3    D. 4
当前题号:6 | 题型:单选题 | 难度:0.99
如图,在矩形ABCD中,∠ABC的角平分线交对角线AC于点M,ME⊥AB,MF⊥BC,垂足分别是E,F.判定四边形EBFM的形状,并证明你的结论.
当前题号:7 | 题型:解答题 | 难度:0.99
如图,在正方形ABCD中,点E在对角线AC上,点F在边BC上,连接BE、DF,DF交对角线AC于点G,且DE=DG.
(1)求证:AE=CG;
(2)试判断BE和DF的位置关系,并说明理由.
当前题号:8 | 题型:解答题 | 难度:0.99
已知下列命题:①若a>b,则a2>b2;②若a>1,则(a﹣1)0=1;③两个全等的三角形的面积相等;④四条边相等的四边形是菱形.其中原命题与逆命题均为真命题的个数是()
A.4个B.3个C.2个D.1个
当前题号:9 | 题型:单选题 | 难度:0.99
如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.

(1)线段OC的长为    
(2)求证:△CBD≌△COE;
(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD,CE,设点E的坐标为(a,0),其中a≠2,△CD1E1的面积为S.
①当1<a<2时,请直接写出S与a之间的函数表达式;
②在平移过程中,当S=时,请直接写出a的值.
当前题号:10 | 题型:解答题 | 难度:0.99