刷题首页
题库
初中数学
题干
如图,正方形ABCD中,点E是AD边中点,BD、CE交于点H,BE、AH交于点G,则下列结论:
①AG⊥BE;②BG=4GE;③S△BHE=S△CHD;④∠AHB=∠EHD.
其中正确的个数是( )
A.1
B.2
C.3 D. 4
上一题
下一题
0.99难度 单选题 更新时间:2016-09-07 05:50:33
答案(点此获取答案解析)
同类题1
如图,在Rt△
ABC
中,∠
BAC
=90°,
AD
=
CD
,点
E
是边
AC
的中点,连接
DE
,
DE
的延长线与边
BC
相交于点
F
,
AG
∥
BC
,交
DE
于点
G
,连接
AF
、
CG
.
(1)求证:
AF
=
BF
;
(2)如果
AB
=
AC
,求证:四边形
AFCG
是正方形.
同类题2
请阅读下列材料:
问题:如图,在正方形
和平行四边形
中,点
,
,
在同一条直线上,
是线段
的中点,连接
,
.
探究:当
与
的夹角为多少度时,平行四边形
是正方形?
小聪同学的思路是:首先可以说明四边形
是矩形;然后延长
交
于点
,构造全等三角形,经过推理可以探索出问题的答案.
请你参考小聪同学的思路,探究并解决这个问题.
(1)求证:四边形
是矩形;
(2)
与
的夹角为________度时,四边形
是正方形.
理由:
同类题3
如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②BG=CG;③AG//CF;④S
△
EFC
=
.其中正确结论的是____________(只填序号).
同类题4
如图,在正方形ABCD中,E为对角线BD上的一点,点F在AD的延长线上,且∠CEF=90°,EF交CD于H,分别过点F,点C作EC和EF的平行线,交于点
A.
(1)证明:AE=CE;
(2)证明:四边形ECGF是正方形;
(3)若正方形ABCD的边长为
,且BE=BC,求此时ΔEDF的面积.
同类题5
如图,已知
,点
在
边的上方,把
绕点
逆时针方向旋转
得
,绕点
顺时针方向旋转
得
,连结
、
.
(1)写出图中所有的等边三角形;
(2)当
满足什么条件时,四边形
是正方形?请说明理由;
(3)当
满足什么条件时,以
、
、
、
为顶点的四边形不存在?请说明理由.
相关知识点
图形的性质
四边形
特殊的平行四边形
正方形的判定与性质综合
根据正方形的性质与判定证明