- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- + 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,按要求画一个三角形:使这个三角形的顶点都在格点上,该三角形的面积为3,且有一边长为
.


人们在长期的数学实践中总结了许多解决数学问题的方法,形成了许多光辉的数学想法,其中转化思想是中学教学中最活跃,最实用,也是最重要的数学思想,例如将不规则图形转化为规则图形就是研究图形问题比较常用的一种方法。
问题提出:求边长分别为
的三角形面积。
问题解决:在解答这个问题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出边长分别为
的格点三角形△ABC(如图①),AB=
是直角边为1和2的直角三角形斜边,BC=
是直角边分别为1和3的直角三角形的斜边,AC=
是直角边分别为2和3 的直角三角形斜边,用一个大长方形的面积减去三个直角三角形的面积,这样不需求△ABC的高,而借用网格就能计算出它的面积。

(1)请直接写出图①中△ABC的面积为_______________ 。
(2)类比迁移:求边长分别为
的三角形面积(请利用图②的正方形网格画出相应的△ABC,并求出它的面积)。
问题提出:求边长分别为

问题解决:在解答这个问题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出边长分别为





(1)请直接写出图①中△ABC的面积为_______________ 。
(2)类比迁移:求边长分别为

如图是由36个边长为1的小正方形拼成的,连接小正方形中的点A、B、C、D、E、F得线段AB、BC、CD、EF,这些线段中长度是有理数的是哪些?长度是无理数的是哪些?说明理由.

图1、图2分别是8×6的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在图1、图2中各画一个图形,分别满足以下要求:
(1)在图1中画一个以线段AB为一边周长为10+2
的平行四边形,所画图形的各顶点必须在小正方形的顶点上.
(2)在图2中画一个以线段AB为一边的等腰三角形,所画等腰三角形的各顶点必须在小正方形的顶点上,并求出该等腰三角形的周长.
(1)在图1中画一个以线段AB为一边周长为10+2

(2)在图2中画一个以线段AB为一边的等腰三角形,所画等腰三角形的各顶点必须在小正方形的顶点上,并求出该等腰三角形的周长.

如图17-Z-10是由边长为1的小正方形组成的网格.
(1)求四边形ABCD的面积;
(2)你能判断AD与CD的位置关系吗?说出你的理由.

图17-Z-10
(1)求四边形ABCD的面积;
(2)你能判断AD与CD的位置关系吗?说出你的理由.

图17-Z-10
图(a)是正方形纸板制成的一副七巧板.
(1)请你在图(a)中给它的每一小块用①~⑦编号(编号直接标在每一小块对应图形内部的空白处;每小块只能与一个编号对应,每个编号只能和一个小块对应),并同时满足以下三个条件:
条件1:编号为①~③的三小块可以拼成一个轴对称图形;
条件2:编号为④~⑥的三小块可以拼成一个中心对称图形;
条件3:编号为⑦的小块是中心对称图形.
(2)请你在图(b)中画出编号为①~③的三小块拼出的轴对称图形;在图(c)中画出编号为④~⑥的三小块拼出的中心对称图形.(注意:没有编号不得分)
(1)请你在图(a)中给它的每一小块用①~⑦编号(编号直接标在每一小块对应图形内部的空白处;每小块只能与一个编号对应,每个编号只能和一个小块对应),并同时满足以下三个条件:
条件1:编号为①~③的三小块可以拼成一个轴对称图形;
条件2:编号为④~⑥的三小块可以拼成一个中心对称图形;
条件3:编号为⑦的小块是中心对称图形.
(2)请你在图(b)中画出编号为①~③的三小块拼出的轴对称图形;在图(c)中画出编号为④~⑥的三小块拼出的中心对称图形.(注意:没有编号不得分)

如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
(1)计算AC2+BC2的值等于 ;
(2)请在如图所示的网格中,用无刻度的直尺,画出一个平行四边形ABEF,使得该平行四边形的面积等于16;
(3)请在如图所示的网格中,用无刻度的直尺,画出一个矩形ABMN,使得该矩形的面积等于AC2+BC2.

(1)计算AC2+BC2的值等于 ;
(2)请在如图所示的网格中,用无刻度的直尺,画出一个平行四边形ABEF,使得该平行四边形的面积等于16;
(3)请在如图所示的网格中,用无刻度的直尺,画出一个矩形ABMN,使得该矩形的面积等于AC2+BC2.


图①②③是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.

(1)图①中△MON的面积=________;
(2)在图②③中以格点为顶点画出一个正方形ABCD,使正方形ABCD的面积等于(1)中△MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD的面积没有剩余(在图②、图③中画出的图形不能是全等形)

(1)图①中△MON的面积=________;
(2)在图②③中以格点为顶点画出一个正方形ABCD,使正方形ABCD的面积等于(1)中△MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD的面积没有剩余(在图②、图③中画出的图形不能是全等形)