问题背景:
在△ABC中,AB,BC,AC三边的长度分别为,求这个三角形的面积。
小辉同学在解得这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.

(1)请你直接写出△ABC的面积为:______;
思维拓展
(2)若△DEF三边的长分别为a,2a,a(a>0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△AB
A.并利用构图法求出它的面积;
探索创新:
(3)若在△ABC三边的长分别为,,(m>0,n>0,且m≠n),试运用构图法求出三角形的面积。
当前题号:1 | 题型:解答题 | 难度:0.99
如图1,在的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点C时,两个点都停止运动.

(1)请在的网格纸图2中画出运动时间t为2秒时的线段PQ并求其长度;
(2)在动点P、Q运动的过程中,△PQB能否成为PQ=BQ的等腰三角形?若能,请求出相应的运动时间t;若不能,请说明理由;
(3)在(1)中的图2中,点E如图所示,是否在PQ上存在一点M,使DM+EM的值最小,如存在,求出DM+EM最小值;如不存在,说明理由.
当前题号:2 | 题型:解答题 | 难度:0.99