- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
操作与探究
图(1)
定义:三边长和面积都是整数的三角形称为“整数三角形”.
数学学习小组的同学从32根等长的火柴棒(每根长度记为1个单位)中取出若干根,首尾依次相接组成三角形,进行探究活动.
小东用12根火柴棒,摆成如图所示的“整数三角形”;
小颖分用24根火柴棒摆出直角“整数三角形”;
小军受到小东、小颖的启发,用30根火柴棒摆出直角“整数三角形”;
(1)请你画出小颖和小军摆出的直角“整数三角形”的示意图;
(2)你能否也从中取出若干根,按下列要求摆出“整数三角形”,如果能,请画出示意图;如果不能,请说明理由.
①摆出一个等腰“整数三角形”;
②摆出一个非特殊(既非直角三角形,也非等腰三角形)“整数三角形”.
图(1)
定义:三边长和面积都是整数的三角形称为“整数三角形”.
数学学习小组的同学从32根等长的火柴棒(每根长度记为1个单位)中取出若干根,首尾依次相接组成三角形,进行探究活动.
小东用12根火柴棒,摆成如图所示的“整数三角形”;
小颖分用24根火柴棒摆出直角“整数三角形”;
小军受到小东、小颖的启发,用30根火柴棒摆出直角“整数三角形”;
(1)请你画出小颖和小军摆出的直角“整数三角形”的示意图;
(2)你能否也从中取出若干根,按下列要求摆出“整数三角形”,如果能,请画出示意图;如果不能,请说明理由.
①摆出一个等腰“整数三角形”;
②摆出一个非特殊(既非直角三角形,也非等腰三角形)“整数三角形”.

如图,在锐角三角形ABC中,BC=6
,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是_____.


已知点E是菱形ABCD边BC上的中点,∠ABC=30°,P是对角线BD上一点,且PC+PE=
.则菱形ABCD面积的最大值是_____.


如图,有一块一边长为24 m的长方形绿地,在绿地旁边B处有健身器材,由于居住在A处的居民践踏了绿地,小颖想在A处立一个标牌“少走___步,踏之何忍”但小颖不知应填什么数字,请你帮助她填上好吗?(假设两步为1米) 

如图,已知矩形ABCD,AD=9,AB=6,若点G、H、M、N分别在AB、CD、AD、BC上,线段MN与GH交于点K.若∠GKM=45°,NM=3
,则GH=__.

