- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图, 在方格纸中, 每一个小正方形的边长为1, 按要求画一个三角形,使它的顶点都在小方格的顶点上.
(1)在图甲中画一个以AB为边且面积为3的直角三角形
(2)在图乙中画一个等腰三角形, 使AC在三角形的内部(不包括边界)
(1)在图甲中画一个以AB为边且面积为3的直角三角形
(2)在图乙中画一个等腰三角形, 使AC在三角形的内部(不包括边界)

活动课上, 小华将两张直角三角形纸片如图放置, 已知AC=8,O是AC的中点, △ABO与△CDO的面积之比为4:3, 则两纸片重叠部分即△OBC的面积为()


A.4 | B.6 | C.2![]() | D.2![]() |
如图,点O为等腰三角形ABC底边BC的中点,
,
,腰AC的垂直平分线EF分别交AB、AC于E、F点,若点P为线段EF上一动点,则△OPC周长的最小值为_________.






(1)如图1,点






(2)如图2,点








(3)如图3,点


















