- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,每个小格的顶点叫做格点,每个小正方形边长为1,
(1)请在方格中作出一个正方形,满足下列两个条件:
①要求所作的正方形的顶点必须在格点上.
②所作的正方形的面积为8
(2)在数轴上表示实数
.
(1)请在方格中作出一个正方形,满足下列两个条件:
①要求所作的正方形的顶点必须在格点上.
②所作的正方形的面积为8
(2)在数轴上表示实数


如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2
.以上结论中,你认为正确的有()个.

①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2


A.1 | B.2 | C.3 | D.4 |
如图(1)将长方形纸片ABCD的一边CD沿着CQ向下折叠,使点D落在边AB上的点P处.
(1)试判断线段CQ与PD的关系,并说明理由;
(2)如图(2),若AB=CD=5,AD=BC=3.求AQ的长;
(3)如图(2),BC=3,取CQ的中点M,连接MD,PM,若MD⊥PM,求AQ(AB+BC)的值.
(1)试判断线段CQ与PD的关系,并说明理由;
(2)如图(2),若AB=CD=5,AD=BC=3.求AQ的长;
(3)如图(2),BC=3,取CQ的中点M,连接MD,PM,若MD⊥PM,求AQ(AB+BC)的值.

综合与实践 美妙的黄金矩形
阅读理解
在数学上称短边与长边的比是
(约为0.618)的矩形叫做黄金矩形(GoldenRectangle),黄金矩形蕴藏着丰富的美学价值,给我们以协调、匀称的美感.
(1)某校团委举办“五•四手抄报比赛”,手抄报规格统一设计成:长是40cm的黄金矩形,则宽约为__________cm;(精确到0.1cm)
操作发现 利用一张正方形纸片折叠出一个黄金矩形.
第一步,如图1,折叠正方形纸片ABCD,使AB和DC重合,得到折痕EF(点E,F分别在边AD,BC上),然后把纸片展平.

第二步,如图2,折叠正方形纸片ABCD,使得BC落在BE上,点C′和点C对应,得到折痕BG(点G在CD上),再次纸片展平.
第三步,如图3,沿过点G的直线折叠正方形纸片ABCD,使点A和点D分别落在AB和CD上,折痕为HG,显然四边形HBCG为矩形.
(2)在上述操作中,以AB=2为例,证明矩形HBCG是黄金矩形.
(参考计算:
=
)
拓广探索
(3)“希望小组”的同学通过探究发现:以黄金矩形的长边为一边,在原黄金矩形外作正方形,得到的新矩形仍然是黄金矩形.
如图4,如果四边形ABCD是黄金矩形(AB>AD),四边形DCEF是正方形,那么四边形ABEF也是黄金矩形,他们的发现正确吗?请说明理由.
阅读理解
在数学上称短边与长边的比是

(1)某校团委举办“五•四手抄报比赛”,手抄报规格统一设计成:长是40cm的黄金矩形,则宽约为__________cm;(精确到0.1cm)
操作发现 利用一张正方形纸片折叠出一个黄金矩形.
第一步,如图1,折叠正方形纸片ABCD,使AB和DC重合,得到折痕EF(点E,F分别在边AD,BC上),然后把纸片展平.

第二步,如图2,折叠正方形纸片ABCD,使得BC落在BE上,点C′和点C对应,得到折痕BG(点G在CD上),再次纸片展平.
第三步,如图3,沿过点G的直线折叠正方形纸片ABCD,使点A和点D分别落在AB和CD上,折痕为HG,显然四边形HBCG为矩形.
(2)在上述操作中,以AB=2为例,证明矩形HBCG是黄金矩形.
(参考计算:


拓广探索
(3)“希望小组”的同学通过探究发现:以黄金矩形的长边为一边,在原黄金矩形外作正方形,得到的新矩形仍然是黄金矩形.
如图4,如果四边形ABCD是黄金矩形(AB>AD),四边形DCEF是正方形,那么四边形ABEF也是黄金矩形,他们的发现正确吗?请说明理由.
如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC、BD相交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.若AB=
,BD=2,则BE的长等于_____ .


如图,在矩形ABCD中,AB=6,AD=8, E是AB边的中点,F是线段BC的动点,将△EBF沿EF所在直线折叠得到△EB'F,连接B'D,则B'D的最小值是_________.
