- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.在Rt△ABC的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,如图所示.要求:在答题卡的两个备用图中分别画出两种与示例不同的拼接方法,并在图中标明拼接的直角三角形的三边长.(请同学们先用铅笔画出草图,确定后再用0.5毫米的黑色签字笔画出正确的图形)

现场学习题:问题背景:在△ABC中,AB、BC、AC三边的长分别为
、
、
,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.

(1)请你将△ABC的面积直接填写在横线上.
思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为
、
、
(a>0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积是: .




(1)请你将△ABC的面积直接填写在横线上.
思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为



如图,MN是圆柱底面的直径,MN=2,MP是圆柱的高,MP=4,在圆柱的侧面上,过点M,P有一条绕了四周的路径最短的金属丝,则金属丝的长为_____.

如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是( )


A.1.5 | B.1.8 | C.2 | D.2.5 |
如图是一个底面为等边三角形的三棱镜,在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为5cm,底面边长为4cm,则这圈金属丝的长度至少为( )


A.8cm | B.13cm | C.12cm | D.15cm |