- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 根据等边对等角求角度
- + 根据等边对等角证明
- 根据三线合一求解
- 根据三线合一证明
- 等腰三角形的定义
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,∠C=90°,点D、点E为BC边上两点,且AC=DC,
(1)若∠EAC=∠EAF,EF⊥AB且AB=5,BC=4,求线段DE的长度;
(2)若EF⊥AD于点P,CF⊥AE于点Q,且AE=CF,求证:
DE+PF=AP
(1)若∠EAC=∠EAF,EF⊥AB且AB=5,BC=4,求线段DE的长度;
(2)若EF⊥AD于点P,CF⊥AE于点Q,且AE=CF,求证:


如图,在△ABC中,AB=AC=3,∠B=50°,点D在线段BC上运动(不与B、C重合),连接AD,作∠ADE=50°,DE交线段AC于E.

(1)当∠BDA=105°时,∠BAD= °,∠DEC= °;
(2)若DC=AB,求证:△ABD≌△DCE;
(3)在点D的运动过程中,是否存在△ADE是等腰三角形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.

(1)当∠BDA=105°时,∠BAD= °,∠DEC= °;
(2)若DC=AB,求证:△ABD≌△DCE;
(3)在点D的运动过程中,是否存在△ADE是等腰三角形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.
在△ABC中,AD平分∠BAC交BC于点D,在AB上取一点E,使得EA=ED.
(1)求证:DE∥AC;
(2)若ED=EB,BD=2,EA=3,求AD的长.
(1)求证:DE∥AC;
(2)若ED=EB,BD=2,EA=3,求AD的长.

如图,在Rt△ABC中,∠ACB=90°,D是BC上一点,DF∥AB交AC于点F,BD=DF=AF,DE⊥AB于点E.

求证:(1)AD平分∠BAC;
(2)CF=BE.

求证:(1)AD平分∠BAC;
(2)CF=BE.
如图,在△ABC中,∠C=90°,CA=CB, AG平分∠BAC交BC于H,BG⊥AG,垂足为G.若AH=8,则BG的长为( )


A.3 | B.5 | C.8 | D.4 |
如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O,限用无刻度直尺完成以下作图:
(1)在图1中作线段BC的中点P;
(2)在图2中,在OB、OC上分别取点E、F,使EF∥BC.
(1)在图1中作线段BC的中点P;
(2)在图2中,在OB、OC上分别取点E、F,使EF∥BC.

如图,在△ABC中,AB=AC,∠A=36°,分别以A和B为圆心,大于
AB的长为半径作弧,两弧相交于M,N两点,作直线MN分别交AB、AC于点F、D,作DE⊥BC于E.有下面三个结论:①BD平分∠ABC;②DE=DF;③BC+CD=2AF;其中,正确的结论的个数是( )



A.3 | B.2 | C.1 | D.0 |
在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB、BC于D、

求:(1)∠AEB 度数.
(2)BC的长.
A.若∠CAB=∠B+30°,CE=2cm. |

求:(1)∠AEB 度数.
(2)BC的长.