- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,点
在同一条直线上,
,请你只添加一个条件,使得
.
(1)你添加的条件是_________________.(要求:不再添加辅助线,只需填一个答案即可)
(2)依据所添条件,判定
全等的理由是_____________________________.



(1)你添加的条件是_________________.(要求:不再添加辅助线,只需填一个答案即可)
(2)依据所添条件,判定


数学课上,王老师布置如下任务:
如图1,直线MN外一点A,过点A作直线MN的平行线.

(1)小路的作法如下:
① 在MN上任取一点B,作射线BA;
② 以B为圆心任意长为半径画弧,分别交BA和MN于C、D两点(点D位于BA的左侧),再以A为圆心,相同的长度为半径画弧EH,交BA于点E(点E位于点A上方);
③以E为圆心CD的长为半径画弧,交弧EH于点F(F点位于BA左侧)
④作直线AF
⑤直线AF即为所求作平行线.
请你根据小路同学的作图方法,利用直尺和圆规完成作图(保留作图痕迹);并完成以下推理,注明其中蕴含的数学依据:

(2)请你参考小路的作法,利用图2再设计一种“过点A作MN的平行线”的尺规作图过程(保留作图痕迹),并说明其中蕴含的数学依据.
如图1,直线MN外一点A,过点A作直线MN的平行线.

(1)小路的作法如下:
① 在MN上任取一点B,作射线BA;
② 以B为圆心任意长为半径画弧,分别交BA和MN于C、D两点(点D位于BA的左侧),再以A为圆心,相同的长度为半径画弧EH,交BA于点E(点E位于点A上方);
③以E为圆心CD的长为半径画弧,交弧EH于点F(F点位于BA左侧)
④作直线AF
⑤直线AF即为所求作平行线.
请你根据小路同学的作图方法,利用直尺和圆规完成作图(保留作图痕迹);并完成以下推理,注明其中蕴含的数学依据:

(2)请你参考小路的作法,利用图2再设计一种“过点A作MN的平行线”的尺规作图过程(保留作图痕迹),并说明其中蕴含的数学依据.
如图,在
中,
,
,点D为
的中点,直角
绕点D旋转,
,
分别与边
,
交于E,F两点,下列结论:①
是等腰直角三角形;②
;③
;④
,其中正确结论是( ).















A.①②④ | B.②③④ | C.①②③ | D.①②③④ |
如图,小亮数学书上的直角三角形的直角处被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,小亮画出这个三角形的依据是( )


A.HL | B.ASA | C.SAS | D.SSS |