- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,点D,E,F分别在等边三角形ABC的三边上,且DE⊥AB,EF⊥BC,FD⊥AC,过点F作FH⊥AB于H,则
的值为_________.


在△ABC中,∠BAC=90°,AB=AC,∠ABC=∠ACB=45°,在△ABC外侧作∠ACM,使得∠ACM=
∠ABC,点D是射线CB上的动点,过点D作直线CM的垂线,垂足为E,交直线AC于F.

(1)当点D与点B重合时,如图1所示,线段DF与EC的数量关系是 ;
(2)当点D运动到CB延长线上某一点时,线段DF和EC是否保持上述数量关系?请在图2中画出图形,并说明理由.


(1)当点D与点B重合时,如图1所示,线段DF与EC的数量关系是 ;
(2)当点D运动到CB延长线上某一点时,线段DF和EC是否保持上述数量关系?请在图2中画出图形,并说明理由.
△ABC是等边三角形,点C关于AB对称的点为C′,点P是直线C′B上的一个动点,连接AP,作∠APD=60°交射线BC于点D.
(1)若点P在线段C′B上(不与点C′,点B重合)
①如图1,当点P是线段C′B的中点时,直接写出线段PD与线段PA的数量关系 .
②如图2,点P是线段C′B上任意一点,证明PD与PA的数量关系.
(2)若点P在线段C′B的延长线上,
①依题意补全图3;
②直接写出线段BD,AB,BP之间的数量关系为: .
(1)若点P在线段C′B上(不与点C′,点B重合)
①如图1,当点P是线段C′B的中点时,直接写出线段PD与线段PA的数量关系 .
②如图2,点P是线段C′B上任意一点,证明PD与PA的数量关系.
(2)若点P在线段C′B的延长线上,
①依题意补全图3;
②直接写出线段BD,AB,BP之间的数量关系为: .

如图,
中,
,
,
,点
从
点出发沿
路径向终点运动,终点为
点,点
从
点出发沿
路径向终点运动,终点为
点,点
和
分别以每秒
和
的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过
和
作
于
,
于
.设运动时间为
秒,要使以点
,
,
为顶点的三角形与以点
,
,
为顶点的三角形全等,则
的值为______.































如图,在等边
中,
是过点
的一条直线,点
关于直线
的对称点为
,连接
,
,
,其中
,
分别交直线
于点
,
.
(1)若
(
),请用
的代数式表示
;
(2)求证:
.














(1)若




(2)求证:


如图,在等边△ABC中,D、E分别是BC、AC上的动点且BD=CE,连接AD与BE相交于点F,连接CF,下列结论:①△ABD≌△BCE;②∠AFB=120°;③若BD=CD,则FA=FB=FC;④∠AFC=90°,则AF=3BF,其中正确的结论共有( )


A.1个 | B.2个 | C.3个 | D.4个 |